Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -32,15 +32,14 @@ def inspect_file(file):
|
|
32 |
return "No file uploaded.", [], "No preview available."
|
33 |
file_path = file.name
|
34 |
_, file_ext = os.path.splitext(file_path)
|
35 |
-
|
36 |
file_ext = file_ext.lower()
|
|
|
37 |
if file_ext == ".fif":
|
38 |
-
# FIF files:
|
39 |
-
# No columns to choose from, just proceed with default analysis
|
40 |
return (
|
41 |
-
"FIF file detected. No need for time column selection.
|
42 |
[],
|
43 |
-
"FIF file doesn't require
|
44 |
)
|
45 |
elif file_ext == ".csv":
|
46 |
# Read a small portion of the CSV to determine columns
|
@@ -52,14 +51,13 @@ def inspect_file(file):
|
|
52 |
cols = list(df.columns)
|
53 |
preview = df.head().to_markdown()
|
54 |
return (
|
55 |
-
"CSV file detected. Select a time column if available, or
|
56 |
cols,
|
57 |
preview
|
58 |
)
|
59 |
else:
|
60 |
return "Unsupported file format.", [], "No preview available."
|
61 |
|
62 |
-
|
63 |
def load_eeg_data(file_path, default_sfreq=256.0, time_col='time'):
|
64 |
"""
|
65 |
Load EEG data with flexibility.
|
@@ -77,8 +75,8 @@ def load_eeg_data(file_path, default_sfreq=256.0, time_col='time'):
|
|
77 |
elif file_ext == '.csv':
|
78 |
df = pd.read_csv(file_path)
|
79 |
|
80 |
-
# If time_col is specified and in df, use it to compute sfreq
|
81 |
if time_col and time_col in df.columns:
|
|
|
82 |
time = df[time_col].values
|
83 |
data_df = df.drop(columns=[time_col])
|
84 |
|
@@ -88,20 +86,28 @@ def load_eeg_data(file_path, default_sfreq=256.0, time_col='time'):
|
|
88 |
data_df = data_df.drop(columns=[col])
|
89 |
|
90 |
if len(time) < 2:
|
91 |
-
# Not enough time points, fallback
|
92 |
sfreq = default_sfreq
|
93 |
else:
|
94 |
# Compute sfreq from time
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
96 |
else:
|
97 |
# No time column used, assume default_sfreq
|
98 |
-
# Drop non-numeric columns
|
99 |
for col in df.columns:
|
100 |
if not pd.api.types.is_numeric_dtype(df[col]):
|
101 |
df = df.drop(columns=[col])
|
102 |
data_df = df
|
103 |
sfreq = default_sfreq
|
104 |
|
|
|
|
|
|
|
|
|
105 |
ch_names = list(data_df.columns)
|
106 |
data = data_df.values.T # shape: (n_channels, n_samples)
|
107 |
|
@@ -117,9 +123,15 @@ def load_eeg_data(file_path, default_sfreq=256.0, time_col='time'):
|
|
117 |
def analyze_eeg(file, default_sfreq, time_col):
|
118 |
if time_col == "(No time column)":
|
119 |
time_col = None
|
120 |
-
raw = load_eeg_data(file.name, default_sfreq=float(default_sfreq), time_col=time_col)
|
121 |
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
alpha_power = compute_band_power(psd, freqs, 8, 12)
|
124 |
beta_power = compute_band_power(psd, freqs, 13, 30)
|
125 |
|
@@ -130,7 +142,6 @@ def analyze_eeg(file, default_sfreq, time_col):
|
|
130 |
|
131 |
prompt = f"""You are a neuroscientist analyzing EEG features.
|
132 |
Data Summary: {data_summary}
|
133 |
-
|
134 |
Provide a concise, user-friendly interpretation of these findings in simple terms.
|
135 |
"""
|
136 |
inputs = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
|
@@ -140,49 +151,43 @@ Provide a concise, user-friendly interpretation of these findings in simple term
|
|
140 |
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
141 |
return summary
|
142 |
|
143 |
-
|
144 |
-
#########################
|
145 |
-
# BUILD THE GRADIO INTERFACE
|
146 |
-
#########################
|
147 |
-
|
148 |
-
# Step 1: Inspect file
|
149 |
def preview_file(file):
|
150 |
msg, cols, preview = inspect_file(file)
|
151 |
-
#
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
else:
|
156 |
-
cols = []
|
157 |
-
default_value = None
|
158 |
-
|
159 |
-
# Use gr.update(...) for the dropdown output
|
160 |
-
return msg, gr.update(choices=cols, value=default_value), preview
|
161 |
-
|
162 |
|
|
|
|
|
163 |
|
164 |
with gr.Blocks() as demo:
|
165 |
gr.Markdown("# NeuroNarrative-Lite: EEG Summary with Flexible Preprocessing")
|
166 |
gr.Markdown(
|
167 |
-
"Upload an EEG file (FIF or CSV). If it's CSV,
|
168 |
-
"
|
|
|
|
|
169 |
)
|
170 |
|
171 |
file_input = gr.File(label="Upload your EEG data (FIF or CSV)")
|
172 |
preview_button = gr.Button("Inspect File")
|
173 |
msg_output = gr.Markdown()
|
174 |
-
|
|
|
175 |
preview_output = gr.Markdown()
|
176 |
|
177 |
preview_button.click(preview_file, inputs=[file_input], outputs=[msg_output, cols_dropdown, preview_output])
|
178 |
|
179 |
-
default_sfreq_input = gr.Textbox(label="Default Sampling Frequency (Hz) if no time column", value="
|
180 |
analyze_button = gr.Button("Run Analysis")
|
181 |
result_output = gr.Textbox(label="Analysis Summary")
|
182 |
|
183 |
-
analyze_button.click(
|
184 |
-
|
185 |
-
|
|
|
|
|
186 |
|
187 |
if __name__ == "__main__":
|
188 |
demo.launch()
|
|
|
32 |
return "No file uploaded.", [], "No preview available."
|
33 |
file_path = file.name
|
34 |
_, file_ext = os.path.splitext(file_path)
|
|
|
35 |
file_ext = file_ext.lower()
|
36 |
+
|
37 |
if file_ext == ".fif":
|
38 |
+
# FIF files: MNE compatible, no columns needed
|
|
|
39 |
return (
|
40 |
+
"FIF file detected. No need for time column selection. The file's sampling frequency will be used.",
|
41 |
[],
|
42 |
+
"FIF file doesn't require column inspection."
|
43 |
)
|
44 |
elif file_ext == ".csv":
|
45 |
# Read a small portion of the CSV to determine columns
|
|
|
51 |
cols = list(df.columns)
|
52 |
preview = df.head().to_markdown()
|
53 |
return (
|
54 |
+
"CSV file detected. Select a time column if available, or choose (No time column) and specify a default frequency.",
|
55 |
cols,
|
56 |
preview
|
57 |
)
|
58 |
else:
|
59 |
return "Unsupported file format.", [], "No preview available."
|
60 |
|
|
|
61 |
def load_eeg_data(file_path, default_sfreq=256.0, time_col='time'):
|
62 |
"""
|
63 |
Load EEG data with flexibility.
|
|
|
75 |
elif file_ext == '.csv':
|
76 |
df = pd.read_csv(file_path)
|
77 |
|
|
|
78 |
if time_col and time_col in df.columns:
|
79 |
+
# Use the selected time column to compute sfreq
|
80 |
time = df[time_col].values
|
81 |
data_df = df.drop(columns=[time_col])
|
82 |
|
|
|
86 |
data_df = data_df.drop(columns=[col])
|
87 |
|
88 |
if len(time) < 2:
|
89 |
+
# Not enough time points to compute sfreq, fallback
|
90 |
sfreq = default_sfreq
|
91 |
else:
|
92 |
# Compute sfreq from time
|
93 |
+
dt = np.mean(np.diff(time))
|
94 |
+
# Ensure dt is positive
|
95 |
+
if dt <= 0:
|
96 |
+
sfreq = default_sfreq
|
97 |
+
else:
|
98 |
+
sfreq = 1.0 / dt
|
99 |
else:
|
100 |
# No time column used, assume default_sfreq
|
|
|
101 |
for col in df.columns:
|
102 |
if not pd.api.types.is_numeric_dtype(df[col]):
|
103 |
df = df.drop(columns=[col])
|
104 |
data_df = df
|
105 |
sfreq = default_sfreq
|
106 |
|
107 |
+
# Ensure sfreq is positive
|
108 |
+
if sfreq <= 0:
|
109 |
+
sfreq = 256.0 # fallback if something odd happens
|
110 |
+
|
111 |
ch_names = list(data_df.columns)
|
112 |
data = data_df.values.T # shape: (n_channels, n_samples)
|
113 |
|
|
|
123 |
def analyze_eeg(file, default_sfreq, time_col):
|
124 |
if time_col == "(No time column)":
|
125 |
time_col = None
|
|
|
126 |
|
127 |
+
fs = float(default_sfreq)
|
128 |
+
if fs <= 0:
|
129 |
+
fs = 256.0
|
130 |
+
|
131 |
+
raw = load_eeg_data(file.name, default_sfreq=fs, time_col=time_col)
|
132 |
+
|
133 |
+
# Use the directly imported psd_welch function
|
134 |
+
psd, freqs = psd_welch(raw, fmin=1, fmax=40)
|
135 |
alpha_power = compute_band_power(psd, freqs, 8, 12)
|
136 |
beta_power = compute_band_power(psd, freqs, 13, 30)
|
137 |
|
|
|
142 |
|
143 |
prompt = f"""You are a neuroscientist analyzing EEG features.
|
144 |
Data Summary: {data_summary}
|
|
|
145 |
Provide a concise, user-friendly interpretation of these findings in simple terms.
|
146 |
"""
|
147 |
inputs = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
|
|
|
151 |
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
152 |
return summary
|
153 |
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
def preview_file(file):
|
155 |
msg, cols, preview = inspect_file(file)
|
156 |
+
# Always include (No time column) as the first choice
|
157 |
+
# If no columns were found, we still have (No time column) as an option
|
158 |
+
cols = ["(No time column)"] + cols
|
159 |
+
default_value = "(No time column)"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
+
# Return an update dict for the dropdown
|
162 |
+
return msg, gr.update(choices=cols, value=default_value), preview
|
163 |
|
164 |
with gr.Blocks() as demo:
|
165 |
gr.Markdown("# NeuroNarrative-Lite: EEG Summary with Flexible Preprocessing")
|
166 |
gr.Markdown(
|
167 |
+
"Upload an EEG file (FIF or CSV). If it's CSV, click 'Inspect File' to preview columns. "
|
168 |
+
"Select a time column if available or '(No time column)' if not. "
|
169 |
+
"If no time column is chosen, provide a default sampling frequency. "
|
170 |
+
"Then click 'Run Analysis'."
|
171 |
)
|
172 |
|
173 |
file_input = gr.File(label="Upload your EEG data (FIF or CSV)")
|
174 |
preview_button = gr.Button("Inspect File")
|
175 |
msg_output = gr.Markdown()
|
176 |
+
# Allow custom values in case something goes off
|
177 |
+
cols_dropdown = gr.Dropdown(label="Select Time Column (optional)", allow_custom_value=True, interactive=True)
|
178 |
preview_output = gr.Markdown()
|
179 |
|
180 |
preview_button.click(preview_file, inputs=[file_input], outputs=[msg_output, cols_dropdown, preview_output])
|
181 |
|
182 |
+
default_sfreq_input = gr.Textbox(label="Default Sampling Frequency (Hz) if no time column", value="100")
|
183 |
analyze_button = gr.Button("Run Analysis")
|
184 |
result_output = gr.Textbox(label="Analysis Summary")
|
185 |
|
186 |
+
analyze_button.click(
|
187 |
+
analyze_eeg,
|
188 |
+
inputs=[file_input, default_sfreq_input, cols_dropdown],
|
189 |
+
outputs=[result_output]
|
190 |
+
)
|
191 |
|
192 |
if __name__ == "__main__":
|
193 |
demo.launch()
|