Spaces:
Sleeping
Sleeping
import os | |
import mne | |
import numpy as np | |
import pandas as pd | |
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
# Load LLM | |
model_name = "tiiuae/falcon-7b-instruct" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
trust_remote_code=True, | |
torch_dtype=torch.float16, | |
device_map="auto" | |
) | |
def compute_band_power(psd, freqs, fmin, fmax): | |
# psd shape: (n_channels, n_freqs) | |
# freqs shape: (n_freqs,) | |
freq_mask = (freqs >= fmin) & (freqs <= fmax) | |
band_psd = psd[:, freq_mask].mean() | |
return float(band_psd) | |
def inspect_file(file): | |
""" | |
Inspect the uploaded file to determine available columns. | |
If FIF: Just inform that it's an MNE file and no time column is needed. | |
If CSV: Return a list of columns (both numeric and non-numeric). | |
""" | |
if file is None: | |
return "No file uploaded.", [], "No preview available." | |
file_path = file.name | |
_, file_ext = os.path.splitext(file_path) | |
file_ext = file_ext.lower() | |
if file_ext == ".fif": | |
return ( | |
"FIF file detected. No need for time column selection. The file's sampling frequency will be used.", | |
[], | |
"FIF file doesn't require column inspection." | |
) | |
elif file_ext == ".csv": | |
try: | |
df = pd.read_csv(file_path, nrows=5) | |
except Exception as e: | |
return f"Error reading CSV: {e}", [], "Could not read CSV preview." | |
cols = list(df.columns) | |
preview = df.head().to_markdown() | |
return ( | |
"CSV file detected. Select a time column if available, or choose (No time column) and specify a default frequency.", | |
cols, | |
preview | |
) | |
else: | |
return "Unsupported file format.", [], "No preview available." | |
def load_eeg_data(file_path, default_sfreq=256.0, time_col='time'): | |
""" | |
Load EEG data with flexibility. | |
If FIF: Use MNE's read_raw_fif directly. | |
If CSV: | |
- If time_col is given and present in the file, use it. | |
- Otherwise, assume default_sfreq. | |
""" | |
_, file_ext = os.path.splitext(file_path) | |
file_ext = file_ext.lower() | |
if file_ext == '.fif': | |
raw = mne.io.read_raw_fif(file_path, preload=True) | |
elif file_ext == '.csv': | |
df = pd.read_csv(file_path) | |
if time_col and time_col in df.columns: | |
# Use the selected time column to compute sfreq | |
time = df[time_col].values | |
data_df = df.drop(columns=[time_col]) | |
for col in data_df.columns: | |
if not pd.api.types.is_numeric_dtype(data_df[col]): | |
data_df = data_df.drop(columns=[col]) | |
if len(time) < 2: | |
sfreq = default_sfreq | |
else: | |
dt = np.mean(np.diff(time)) | |
if dt <= 0: | |
sfreq = default_sfreq | |
else: | |
sfreq = 1.0 / dt | |
else: | |
# No time column used, assume default_sfreq | |
for col in df.columns: | |
if not pd.api.types.is_numeric_dtype(df[col]): | |
df = df.drop(columns=[col]) | |
data_df = df | |
sfreq = default_sfreq | |
if sfreq <= 0: | |
sfreq = 256.0 | |
ch_names = list(data_df.columns) | |
data = data_df.values.T # (n_channels, n_samples) | |
ch_types = ['eeg'] * len(ch_names) | |
info = mne.create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types) | |
raw = mne.io.RawArray(data, info) | |
else: | |
raise ValueError("Unsupported file format. Provide a FIF or CSV file.") | |
return raw | |
def analyze_eeg(file, default_sfreq, time_col): | |
if time_col == "(No time column)": | |
time_col = None | |
fs = float(default_sfreq) | |
if fs <= 0: | |
fs = 256.0 | |
raw = load_eeg_data(file.name, default_sfreq=fs, time_col=time_col) | |
# Use raw.compute_psd instead of psd_welch | |
psd_obj = raw.compute_psd(fmin=1, fmax=40, method='welch') | |
psd, freqs = psd_obj.get_data(return_freqs=True) | |
alpha_power = compute_band_power(psd, freqs, 8, 12) | |
beta_power = compute_band_power(psd, freqs, 13, 30) | |
data_summary = ( | |
f"Alpha power: {alpha_power:.3f}, Beta power: {beta_power:.3f}. " | |
f"The EEG shows stable alpha rhythms and slightly elevated beta activity." | |
) | |
prompt = f"""You are a neuroscientist analyzing EEG features. | |
Data Summary: {data_summary} | |
Provide a concise, user-friendly interpretation of these findings in simple terms. | |
""" | |
inputs = tokenizer.encode(prompt, return_tensors="pt").to(model.device) | |
outputs = model.generate( | |
inputs, max_length=200, do_sample=True, top_k=50, top_p=0.95 | |
) | |
summary = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return summary | |
def preview_file(file): | |
msg, cols, preview = inspect_file(file) | |
# Always include (No time column) as the first choice | |
cols = ["(No time column)"] + cols | |
default_value = "(No time column)" | |
return msg, gr.update(choices=cols, value=default_value), preview | |
with gr.Blocks() as demo: | |
gr.Markdown("# NeuroNarrative-Lite: EEG Summary with Flexible Preprocessing") | |
gr.Markdown( | |
"Upload an EEG file (FIF or CSV). If it's CSV, click 'Inspect File' to preview columns. " | |
"Select a time column if available or '(No time column)' if not. " | |
"If no time column is chosen, provide a default sampling frequency. " | |
"Then click 'Run Analysis'." | |
) | |
file_input = gr.File(label="Upload your EEG data (FIF or CSV)") | |
preview_button = gr.Button("Inspect File") | |
msg_output = gr.Markdown() | |
cols_dropdown = gr.Dropdown(label="Select Time Column (optional)", allow_custom_value=True, interactive=True) | |
preview_output = gr.Markdown() | |
preview_button.click( | |
preview_file, | |
inputs=[file_input], | |
outputs=[msg_output, cols_dropdown, preview_output] | |
) | |
default_sfreq_input = gr.Textbox(label="Default Sampling Frequency (Hz) if no time column", value="100") | |
analyze_button = gr.Button("Run Analysis") | |
result_output = gr.Textbox(label="Analysis Summary") | |
analyze_button.click( | |
analyze_eeg, | |
inputs=[file_input, default_sfreq_input, cols_dropdown], | |
outputs=[result_output] | |
) | |
if __name__ == "__main__": | |
demo.launch() | |