Rogerjs's picture
Update app.py
10e0076 verified
import os
import mne
import numpy as np
import pandas as pd
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Load LLM
model_name = "tiiuae/falcon-7b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
torch_dtype=torch.float16,
device_map="auto"
)
def compute_band_power(psd, freqs, fmin, fmax):
# psd shape: (n_channels, n_freqs)
# freqs shape: (n_freqs,)
freq_mask = (freqs >= fmin) & (freqs <= fmax)
band_psd = psd[:, freq_mask].mean()
return float(band_psd)
def inspect_file(file):
"""
Inspect the uploaded file to determine available columns.
If FIF: Just inform that it's an MNE file and no time column is needed.
If CSV: Return a list of columns (both numeric and non-numeric).
"""
if file is None:
return "No file uploaded.", [], "No preview available."
file_path = file.name
_, file_ext = os.path.splitext(file_path)
file_ext = file_ext.lower()
if file_ext == ".fif":
return (
"FIF file detected. No need for time column selection. The file's sampling frequency will be used.",
[],
"FIF file doesn't require column inspection."
)
elif file_ext == ".csv":
try:
df = pd.read_csv(file_path, nrows=5)
except Exception as e:
return f"Error reading CSV: {e}", [], "Could not read CSV preview."
cols = list(df.columns)
preview = df.head().to_markdown()
return (
"CSV file detected. Select a time column if available, or choose (No time column) and specify a default frequency.",
cols,
preview
)
else:
return "Unsupported file format.", [], "No preview available."
def load_eeg_data(file_path, default_sfreq=256.0, time_col='time'):
"""
Load EEG data with flexibility.
If FIF: Use MNE's read_raw_fif directly.
If CSV:
- If time_col is given and present in the file, use it.
- Otherwise, assume default_sfreq.
"""
_, file_ext = os.path.splitext(file_path)
file_ext = file_ext.lower()
if file_ext == '.fif':
raw = mne.io.read_raw_fif(file_path, preload=True)
elif file_ext == '.csv':
df = pd.read_csv(file_path)
if time_col and time_col in df.columns:
# Use the selected time column to compute sfreq
time = df[time_col].values
data_df = df.drop(columns=[time_col])
for col in data_df.columns:
if not pd.api.types.is_numeric_dtype(data_df[col]):
data_df = data_df.drop(columns=[col])
if len(time) < 2:
sfreq = default_sfreq
else:
dt = np.mean(np.diff(time))
if dt <= 0:
sfreq = default_sfreq
else:
sfreq = 1.0 / dt
else:
# No time column used, assume default_sfreq
for col in df.columns:
if not pd.api.types.is_numeric_dtype(df[col]):
df = df.drop(columns=[col])
data_df = df
sfreq = default_sfreq
if sfreq <= 0:
sfreq = 256.0
ch_names = list(data_df.columns)
data = data_df.values.T # (n_channels, n_samples)
ch_types = ['eeg'] * len(ch_names)
info = mne.create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types)
raw = mne.io.RawArray(data, info)
else:
raise ValueError("Unsupported file format. Provide a FIF or CSV file.")
return raw
def analyze_eeg(file, default_sfreq, time_col):
if time_col == "(No time column)":
time_col = None
fs = float(default_sfreq)
if fs <= 0:
fs = 256.0
raw = load_eeg_data(file.name, default_sfreq=fs, time_col=time_col)
# Use raw.compute_psd instead of psd_welch
psd_obj = raw.compute_psd(fmin=1, fmax=40, method='welch')
psd, freqs = psd_obj.get_data(return_freqs=True)
alpha_power = compute_band_power(psd, freqs, 8, 12)
beta_power = compute_band_power(psd, freqs, 13, 30)
data_summary = (
f"Alpha power: {alpha_power:.3f}, Beta power: {beta_power:.3f}. "
f"The EEG shows stable alpha rhythms and slightly elevated beta activity."
)
prompt = f"""You are a neuroscientist analyzing EEG features.
Data Summary: {data_summary}
Provide a concise, user-friendly interpretation of these findings in simple terms.
"""
inputs = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
inputs, max_length=200, do_sample=True, top_k=50, top_p=0.95
)
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
return summary
def preview_file(file):
msg, cols, preview = inspect_file(file)
# Always include (No time column) as the first choice
cols = ["(No time column)"] + cols
default_value = "(No time column)"
return msg, gr.update(choices=cols, value=default_value), preview
with gr.Blocks() as demo:
gr.Markdown("# NeuroNarrative-Lite: EEG Summary with Flexible Preprocessing")
gr.Markdown(
"Upload an EEG file (FIF or CSV). If it's CSV, click 'Inspect File' to preview columns. "
"Select a time column if available or '(No time column)' if not. "
"If no time column is chosen, provide a default sampling frequency. "
"Then click 'Run Analysis'."
)
file_input = gr.File(label="Upload your EEG data (FIF or CSV)")
preview_button = gr.Button("Inspect File")
msg_output = gr.Markdown()
cols_dropdown = gr.Dropdown(label="Select Time Column (optional)", allow_custom_value=True, interactive=True)
preview_output = gr.Markdown()
preview_button.click(
preview_file,
inputs=[file_input],
outputs=[msg_output, cols_dropdown, preview_output]
)
default_sfreq_input = gr.Textbox(label="Default Sampling Frequency (Hz) if no time column", value="100")
analyze_button = gr.Button("Run Analysis")
result_output = gr.Textbox(label="Analysis Summary")
analyze_button.click(
analyze_eeg,
inputs=[file_input, default_sfreq_input, cols_dropdown],
outputs=[result_output]
)
if __name__ == "__main__":
demo.launch()