Spaces:
Running
on
Zero
Running
on
Zero
from __future__ import annotations | |
import nodes | |
import folder_paths | |
from comfy.cli_args import args | |
from PIL import Image | |
from PIL.PngImagePlugin import PngInfo | |
import numpy as np | |
import json | |
import os | |
import re | |
from io import BytesIO | |
from inspect import cleandoc | |
import torch | |
import comfy.utils | |
from comfy.comfy_types import FileLocator, IO | |
from server import PromptServer | |
MAX_RESOLUTION = nodes.MAX_RESOLUTION | |
class ImageCrop: | |
def INPUT_TYPES(s): | |
return {"required": { "image": ("IMAGE",), | |
"width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}), | |
"height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}), | |
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), | |
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), | |
}} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "crop" | |
CATEGORY = "image/transform" | |
def crop(self, image, width, height, x, y): | |
x = min(x, image.shape[2] - 1) | |
y = min(y, image.shape[1] - 1) | |
to_x = width + x | |
to_y = height + y | |
img = image[:,y:to_y, x:to_x, :] | |
return (img,) | |
class RepeatImageBatch: | |
def INPUT_TYPES(s): | |
return {"required": { "image": ("IMAGE",), | |
"amount": ("INT", {"default": 1, "min": 1, "max": 4096}), | |
}} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "repeat" | |
CATEGORY = "image/batch" | |
def repeat(self, image, amount): | |
s = image.repeat((amount, 1,1,1)) | |
return (s,) | |
class ImageFromBatch: | |
def INPUT_TYPES(s): | |
return {"required": { "image": ("IMAGE",), | |
"batch_index": ("INT", {"default": 0, "min": 0, "max": 4095}), | |
"length": ("INT", {"default": 1, "min": 1, "max": 4096}), | |
}} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "frombatch" | |
CATEGORY = "image/batch" | |
def frombatch(self, image, batch_index, length): | |
s_in = image | |
batch_index = min(s_in.shape[0] - 1, batch_index) | |
length = min(s_in.shape[0] - batch_index, length) | |
s = s_in[batch_index:batch_index + length].clone() | |
return (s,) | |
class ImageAddNoise: | |
def INPUT_TYPES(s): | |
return {"required": { "image": ("IMAGE",), | |
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "control_after_generate": True, "tooltip": "The random seed used for creating the noise."}), | |
"strength": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}), | |
}} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "repeat" | |
CATEGORY = "image" | |
def repeat(self, image, seed, strength): | |
generator = torch.manual_seed(seed) | |
s = torch.clip((image + strength * torch.randn(image.size(), generator=generator, device="cpu").to(image)), min=0.0, max=1.0) | |
return (s,) | |
class SaveAnimatedWEBP: | |
def __init__(self): | |
self.output_dir = folder_paths.get_output_directory() | |
self.type = "output" | |
self.prefix_append = "" | |
methods = {"default": 4, "fastest": 0, "slowest": 6} | |
def INPUT_TYPES(s): | |
return {"required": | |
{"images": ("IMAGE", ), | |
"filename_prefix": ("STRING", {"default": "ComfyUI"}), | |
"fps": ("FLOAT", {"default": 6.0, "min": 0.01, "max": 1000.0, "step": 0.01}), | |
"lossless": ("BOOLEAN", {"default": True}), | |
"quality": ("INT", {"default": 80, "min": 0, "max": 100}), | |
"method": (list(s.methods.keys()),), | |
# "num_frames": ("INT", {"default": 0, "min": 0, "max": 8192}), | |
}, | |
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, | |
} | |
RETURN_TYPES = () | |
FUNCTION = "save_images" | |
OUTPUT_NODE = True | |
CATEGORY = "image/animation" | |
def save_images(self, images, fps, filename_prefix, lossless, quality, method, num_frames=0, prompt=None, extra_pnginfo=None): | |
method = self.methods.get(method) | |
filename_prefix += self.prefix_append | |
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0]) | |
results: list[FileLocator] = [] | |
pil_images = [] | |
for image in images: | |
i = 255. * image.cpu().numpy() | |
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8)) | |
pil_images.append(img) | |
metadata = pil_images[0].getexif() | |
if not args.disable_metadata: | |
if prompt is not None: | |
metadata[0x0110] = "prompt:{}".format(json.dumps(prompt)) | |
if extra_pnginfo is not None: | |
inital_exif = 0x010f | |
for x in extra_pnginfo: | |
metadata[inital_exif] = "{}:{}".format(x, json.dumps(extra_pnginfo[x])) | |
inital_exif -= 1 | |
if num_frames == 0: | |
num_frames = len(pil_images) | |
c = len(pil_images) | |
for i in range(0, c, num_frames): | |
file = f"{filename}_{counter:05}_.webp" | |
pil_images[i].save(os.path.join(full_output_folder, file), save_all=True, duration=int(1000.0/fps), append_images=pil_images[i + 1:i + num_frames], exif=metadata, lossless=lossless, quality=quality, method=method) | |
results.append({ | |
"filename": file, | |
"subfolder": subfolder, | |
"type": self.type | |
}) | |
counter += 1 | |
animated = num_frames != 1 | |
return { "ui": { "images": results, "animated": (animated,) } } | |
class SaveAnimatedPNG: | |
def __init__(self): | |
self.output_dir = folder_paths.get_output_directory() | |
self.type = "output" | |
self.prefix_append = "" | |
def INPUT_TYPES(s): | |
return {"required": | |
{"images": ("IMAGE", ), | |
"filename_prefix": ("STRING", {"default": "ComfyUI"}), | |
"fps": ("FLOAT", {"default": 6.0, "min": 0.01, "max": 1000.0, "step": 0.01}), | |
"compress_level": ("INT", {"default": 4, "min": 0, "max": 9}) | |
}, | |
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, | |
} | |
RETURN_TYPES = () | |
FUNCTION = "save_images" | |
OUTPUT_NODE = True | |
CATEGORY = "image/animation" | |
def save_images(self, images, fps, compress_level, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None): | |
filename_prefix += self.prefix_append | |
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0]) | |
results = list() | |
pil_images = [] | |
for image in images: | |
i = 255. * image.cpu().numpy() | |
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8)) | |
pil_images.append(img) | |
metadata = None | |
if not args.disable_metadata: | |
metadata = PngInfo() | |
if prompt is not None: | |
metadata.add(b"comf", "prompt".encode("latin-1", "strict") + b"\0" + json.dumps(prompt).encode("latin-1", "strict"), after_idat=True) | |
if extra_pnginfo is not None: | |
for x in extra_pnginfo: | |
metadata.add(b"comf", x.encode("latin-1", "strict") + b"\0" + json.dumps(extra_pnginfo[x]).encode("latin-1", "strict"), after_idat=True) | |
file = f"{filename}_{counter:05}_.png" | |
pil_images[0].save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=compress_level, save_all=True, duration=int(1000.0/fps), append_images=pil_images[1:]) | |
results.append({ | |
"filename": file, | |
"subfolder": subfolder, | |
"type": self.type | |
}) | |
return { "ui": { "images": results, "animated": (True,)} } | |
class SVG: | |
""" | |
Stores SVG representations via a list of BytesIO objects. | |
""" | |
def __init__(self, data: list[BytesIO]): | |
self.data = data | |
def combine(self, other: 'SVG') -> 'SVG': | |
return SVG(self.data + other.data) | |
def combine_all(svgs: list['SVG']) -> 'SVG': | |
all_svgs_list: list[BytesIO] = [] | |
for svg_item in svgs: | |
all_svgs_list.extend(svg_item.data) | |
return SVG(all_svgs_list) | |
class ImageStitch: | |
"""Upstreamed from https://github.com/kijai/ComfyUI-KJNodes""" | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image1": ("IMAGE",), | |
"direction": (["right", "down", "left", "up"], {"default": "right"}), | |
"match_image_size": ("BOOLEAN", {"default": True}), | |
"spacing_width": ( | |
"INT", | |
{"default": 0, "min": 0, "max": 1024, "step": 2}, | |
), | |
"spacing_color": ( | |
["white", "black", "red", "green", "blue"], | |
{"default": "white"}, | |
), | |
}, | |
"optional": { | |
"image2": ("IMAGE",), | |
}, | |
} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "stitch" | |
CATEGORY = "image/transform" | |
DESCRIPTION = """ | |
Stitches image2 to image1 in the specified direction. | |
If image2 is not provided, returns image1 unchanged. | |
Optional spacing can be added between images. | |
""" | |
def stitch( | |
self, | |
image1, | |
direction, | |
match_image_size, | |
spacing_width, | |
spacing_color, | |
image2=None, | |
): | |
if image2 is None: | |
return (image1,) | |
# Handle batch size differences | |
if image1.shape[0] != image2.shape[0]: | |
max_batch = max(image1.shape[0], image2.shape[0]) | |
if image1.shape[0] < max_batch: | |
image1 = torch.cat( | |
[image1, image1[-1:].repeat(max_batch - image1.shape[0], 1, 1, 1)] | |
) | |
if image2.shape[0] < max_batch: | |
image2 = torch.cat( | |
[image2, image2[-1:].repeat(max_batch - image2.shape[0], 1, 1, 1)] | |
) | |
# Match image sizes if requested | |
if match_image_size: | |
h1, w1 = image1.shape[1:3] | |
h2, w2 = image2.shape[1:3] | |
aspect_ratio = w2 / h2 | |
if direction in ["left", "right"]: | |
target_h, target_w = h1, int(h1 * aspect_ratio) | |
else: # up, down | |
target_w, target_h = w1, int(w1 / aspect_ratio) | |
image2 = comfy.utils.common_upscale( | |
image2.movedim(-1, 1), target_w, target_h, "lanczos", "disabled" | |
).movedim(1, -1) | |
color_map = { | |
"white": 1.0, | |
"black": 0.0, | |
"red": (1.0, 0.0, 0.0), | |
"green": (0.0, 1.0, 0.0), | |
"blue": (0.0, 0.0, 1.0), | |
} | |
color_val = color_map[spacing_color] | |
# When not matching sizes, pad to align non-concat dimensions | |
if not match_image_size: | |
h1, w1 = image1.shape[1:3] | |
h2, w2 = image2.shape[1:3] | |
pad_value = 0.0 | |
if not isinstance(color_val, tuple): | |
pad_value = color_val | |
if direction in ["left", "right"]: | |
# For horizontal concat, pad heights to match | |
if h1 != h2: | |
target_h = max(h1, h2) | |
if h1 < target_h: | |
pad_h = target_h - h1 | |
pad_top, pad_bottom = pad_h // 2, pad_h - pad_h // 2 | |
image1 = torch.nn.functional.pad(image1, (0, 0, 0, 0, pad_top, pad_bottom), mode='constant', value=pad_value) | |
if h2 < target_h: | |
pad_h = target_h - h2 | |
pad_top, pad_bottom = pad_h // 2, pad_h - pad_h // 2 | |
image2 = torch.nn.functional.pad(image2, (0, 0, 0, 0, pad_top, pad_bottom), mode='constant', value=pad_value) | |
else: # up, down | |
# For vertical concat, pad widths to match | |
if w1 != w2: | |
target_w = max(w1, w2) | |
if w1 < target_w: | |
pad_w = target_w - w1 | |
pad_left, pad_right = pad_w // 2, pad_w - pad_w // 2 | |
image1 = torch.nn.functional.pad(image1, (0, 0, pad_left, pad_right), mode='constant', value=pad_value) | |
if w2 < target_w: | |
pad_w = target_w - w2 | |
pad_left, pad_right = pad_w // 2, pad_w - pad_w // 2 | |
image2 = torch.nn.functional.pad(image2, (0, 0, pad_left, pad_right), mode='constant', value=pad_value) | |
# Ensure same number of channels | |
if image1.shape[-1] != image2.shape[-1]: | |
max_channels = max(image1.shape[-1], image2.shape[-1]) | |
if image1.shape[-1] < max_channels: | |
image1 = torch.cat( | |
[ | |
image1, | |
torch.ones( | |
*image1.shape[:-1], | |
max_channels - image1.shape[-1], | |
device=image1.device, | |
), | |
], | |
dim=-1, | |
) | |
if image2.shape[-1] < max_channels: | |
image2 = torch.cat( | |
[ | |
image2, | |
torch.ones( | |
*image2.shape[:-1], | |
max_channels - image2.shape[-1], | |
device=image2.device, | |
), | |
], | |
dim=-1, | |
) | |
# Add spacing if specified | |
if spacing_width > 0: | |
spacing_width = spacing_width + (spacing_width % 2) # Ensure even | |
if direction in ["left", "right"]: | |
spacing_shape = ( | |
image1.shape[0], | |
max(image1.shape[1], image2.shape[1]), | |
spacing_width, | |
image1.shape[-1], | |
) | |
else: | |
spacing_shape = ( | |
image1.shape[0], | |
spacing_width, | |
max(image1.shape[2], image2.shape[2]), | |
image1.shape[-1], | |
) | |
spacing = torch.full(spacing_shape, 0.0, device=image1.device) | |
if isinstance(color_val, tuple): | |
for i, c in enumerate(color_val): | |
if i < spacing.shape[-1]: | |
spacing[..., i] = c | |
if spacing.shape[-1] == 4: # Add alpha | |
spacing[..., 3] = 1.0 | |
else: | |
spacing[..., : min(3, spacing.shape[-1])] = color_val | |
if spacing.shape[-1] == 4: | |
spacing[..., 3] = 1.0 | |
# Concatenate images | |
images = [image2, image1] if direction in ["left", "up"] else [image1, image2] | |
if spacing_width > 0: | |
images.insert(1, spacing) | |
concat_dim = 2 if direction in ["left", "right"] else 1 | |
return (torch.cat(images, dim=concat_dim),) | |
class ResizeAndPadImage: | |
def INPUT_TYPES(cls): | |
return { | |
"required": { | |
"image": ("IMAGE",), | |
"target_width": ("INT", { | |
"default": 512, | |
"min": 1, | |
"max": MAX_RESOLUTION, | |
"step": 1 | |
}), | |
"target_height": ("INT", { | |
"default": 512, | |
"min": 1, | |
"max": MAX_RESOLUTION, | |
"step": 1 | |
}), | |
"padding_color": (["white", "black"],), | |
"interpolation": (["area", "bicubic", "nearest-exact", "bilinear", "lanczos"],), | |
} | |
} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "resize_and_pad" | |
CATEGORY = "image/transform" | |
def resize_and_pad(self, image, target_width, target_height, padding_color, interpolation): | |
batch_size, orig_height, orig_width, channels = image.shape | |
scale_w = target_width / orig_width | |
scale_h = target_height / orig_height | |
scale = min(scale_w, scale_h) | |
new_width = int(orig_width * scale) | |
new_height = int(orig_height * scale) | |
image_permuted = image.permute(0, 3, 1, 2) | |
resized = comfy.utils.common_upscale(image_permuted, new_width, new_height, interpolation, "disabled") | |
pad_value = 0.0 if padding_color == "black" else 1.0 | |
padded = torch.full( | |
(batch_size, channels, target_height, target_width), | |
pad_value, | |
dtype=image.dtype, | |
device=image.device | |
) | |
y_offset = (target_height - new_height) // 2 | |
x_offset = (target_width - new_width) // 2 | |
padded[:, :, y_offset:y_offset + new_height, x_offset:x_offset + new_width] = resized | |
output = padded.permute(0, 2, 3, 1) | |
return (output,) | |
class SaveSVGNode: | |
""" | |
Save SVG files on disk. | |
""" | |
def __init__(self): | |
self.output_dir = folder_paths.get_output_directory() | |
self.type = "output" | |
self.prefix_append = "" | |
RETURN_TYPES = () | |
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value | |
FUNCTION = "save_svg" | |
CATEGORY = "image/save" # Changed | |
OUTPUT_NODE = True | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"svg": ("SVG",), # Changed | |
"filename_prefix": ("STRING", {"default": "svg/ComfyUI", "tooltip": "The prefix for the file to save. This may include formatting information such as %date:yyyy-MM-dd% or %Empty Latent Image.width% to include values from nodes."}) | |
}, | |
"hidden": { | |
"prompt": "PROMPT", | |
"extra_pnginfo": "EXTRA_PNGINFO" | |
} | |
} | |
def save_svg(self, svg: SVG, filename_prefix="svg/ComfyUI", prompt=None, extra_pnginfo=None): | |
filename_prefix += self.prefix_append | |
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir) | |
results = list() | |
# Prepare metadata JSON | |
metadata_dict = {} | |
if prompt is not None: | |
metadata_dict["prompt"] = prompt | |
if extra_pnginfo is not None: | |
metadata_dict.update(extra_pnginfo) | |
# Convert metadata to JSON string | |
metadata_json = json.dumps(metadata_dict, indent=2) if metadata_dict else None | |
for batch_number, svg_bytes in enumerate(svg.data): | |
filename_with_batch_num = filename.replace("%batch_num%", str(batch_number)) | |
file = f"{filename_with_batch_num}_{counter:05}_.svg" | |
# Read SVG content | |
svg_bytes.seek(0) | |
svg_content = svg_bytes.read().decode('utf-8') | |
# Inject metadata if available | |
if metadata_json: | |
# Create metadata element with CDATA section | |
metadata_element = f""" <metadata> | |
<![CDATA[ | |
{metadata_json} | |
]]> | |
</metadata> | |
""" | |
# Insert metadata after opening svg tag using regex with a replacement function | |
def replacement(match): | |
# match.group(1) contains the captured <svg> tag | |
return match.group(1) + '\n' + metadata_element | |
# Apply the substitution | |
svg_content = re.sub(r'(<svg[^>]*>)', replacement, svg_content, flags=re.UNICODE) | |
# Write the modified SVG to file | |
with open(os.path.join(full_output_folder, file), 'wb') as svg_file: | |
svg_file.write(svg_content.encode('utf-8')) | |
results.append({ | |
"filename": file, | |
"subfolder": subfolder, | |
"type": self.type | |
}) | |
counter += 1 | |
return { "ui": { "images": results } } | |
class GetImageSize: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image": (IO.IMAGE,), | |
}, | |
"hidden": { | |
"unique_id": "UNIQUE_ID", | |
} | |
} | |
RETURN_TYPES = (IO.INT, IO.INT, IO.INT) | |
RETURN_NAMES = ("width", "height", "batch_size") | |
FUNCTION = "get_size" | |
CATEGORY = "image" | |
DESCRIPTION = """Returns width and height of the image, and passes it through unchanged.""" | |
def get_size(self, image, unique_id=None) -> tuple[int, int]: | |
height = image.shape[1] | |
width = image.shape[2] | |
batch_size = image.shape[0] | |
# Send progress text to display size on the node | |
if unique_id: | |
PromptServer.instance.send_progress_text(f"width: {width}, height: {height}\n batch size: {batch_size}", unique_id) | |
return width, height, batch_size | |
class ImageRotate: | |
def INPUT_TYPES(s): | |
return {"required": { "image": (IO.IMAGE,), | |
"rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],), | |
}} | |
RETURN_TYPES = (IO.IMAGE,) | |
FUNCTION = "rotate" | |
CATEGORY = "image/transform" | |
def rotate(self, image, rotation): | |
rotate_by = 0 | |
if rotation.startswith("90"): | |
rotate_by = 1 | |
elif rotation.startswith("180"): | |
rotate_by = 2 | |
elif rotation.startswith("270"): | |
rotate_by = 3 | |
image = torch.rot90(image, k=rotate_by, dims=[2, 1]) | |
return (image,) | |
class ImageFlip: | |
def INPUT_TYPES(s): | |
return {"required": { "image": (IO.IMAGE,), | |
"flip_method": (["x-axis: vertically", "y-axis: horizontally"],), | |
}} | |
RETURN_TYPES = (IO.IMAGE,) | |
FUNCTION = "flip" | |
CATEGORY = "image/transform" | |
def flip(self, image, flip_method): | |
if flip_method.startswith("x"): | |
image = torch.flip(image, dims=[1]) | |
elif flip_method.startswith("y"): | |
image = torch.flip(image, dims=[2]) | |
return (image,) | |
NODE_CLASS_MAPPINGS = { | |
"ImageCrop": ImageCrop, | |
"RepeatImageBatch": RepeatImageBatch, | |
"ImageFromBatch": ImageFromBatch, | |
"ImageAddNoise": ImageAddNoise, | |
"SaveAnimatedWEBP": SaveAnimatedWEBP, | |
"SaveAnimatedPNG": SaveAnimatedPNG, | |
"SaveSVGNode": SaveSVGNode, | |
"ImageStitch": ImageStitch, | |
"ResizeAndPadImage": ResizeAndPadImage, | |
"GetImageSize": GetImageSize, | |
"ImageRotate": ImageRotate, | |
"ImageFlip": ImageFlip, | |
} | |