Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,891 Bytes
c2bcd10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 |
from __future__ import annotations
import nodes
import folder_paths
from comfy.cli_args import args
from PIL import Image
from PIL.PngImagePlugin import PngInfo
import numpy as np
import json
import os
import re
from io import BytesIO
from inspect import cleandoc
import torch
import comfy.utils
from comfy.comfy_types import FileLocator, IO
from server import PromptServer
MAX_RESOLUTION = nodes.MAX_RESOLUTION
class ImageCrop:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE",),
"width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
"height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "crop"
CATEGORY = "image/transform"
def crop(self, image, width, height, x, y):
x = min(x, image.shape[2] - 1)
y = min(y, image.shape[1] - 1)
to_x = width + x
to_y = height + y
img = image[:,y:to_y, x:to_x, :]
return (img,)
class RepeatImageBatch:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE",),
"amount": ("INT", {"default": 1, "min": 1, "max": 4096}),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "repeat"
CATEGORY = "image/batch"
def repeat(self, image, amount):
s = image.repeat((amount, 1,1,1))
return (s,)
class ImageFromBatch:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE",),
"batch_index": ("INT", {"default": 0, "min": 0, "max": 4095}),
"length": ("INT", {"default": 1, "min": 1, "max": 4096}),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "frombatch"
CATEGORY = "image/batch"
def frombatch(self, image, batch_index, length):
s_in = image
batch_index = min(s_in.shape[0] - 1, batch_index)
length = min(s_in.shape[0] - batch_index, length)
s = s_in[batch_index:batch_index + length].clone()
return (s,)
class ImageAddNoise:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE",),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "control_after_generate": True, "tooltip": "The random seed used for creating the noise."}),
"strength": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "repeat"
CATEGORY = "image"
def repeat(self, image, seed, strength):
generator = torch.manual_seed(seed)
s = torch.clip((image + strength * torch.randn(image.size(), generator=generator, device="cpu").to(image)), min=0.0, max=1.0)
return (s,)
class SaveAnimatedWEBP:
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
self.type = "output"
self.prefix_append = ""
methods = {"default": 4, "fastest": 0, "slowest": 6}
@classmethod
def INPUT_TYPES(s):
return {"required":
{"images": ("IMAGE", ),
"filename_prefix": ("STRING", {"default": "ComfyUI"}),
"fps": ("FLOAT", {"default": 6.0, "min": 0.01, "max": 1000.0, "step": 0.01}),
"lossless": ("BOOLEAN", {"default": True}),
"quality": ("INT", {"default": 80, "min": 0, "max": 100}),
"method": (list(s.methods.keys()),),
# "num_frames": ("INT", {"default": 0, "min": 0, "max": 8192}),
},
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
RETURN_TYPES = ()
FUNCTION = "save_images"
OUTPUT_NODE = True
CATEGORY = "image/animation"
def save_images(self, images, fps, filename_prefix, lossless, quality, method, num_frames=0, prompt=None, extra_pnginfo=None):
method = self.methods.get(method)
filename_prefix += self.prefix_append
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
results: list[FileLocator] = []
pil_images = []
for image in images:
i = 255. * image.cpu().numpy()
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
pil_images.append(img)
metadata = pil_images[0].getexif()
if not args.disable_metadata:
if prompt is not None:
metadata[0x0110] = "prompt:{}".format(json.dumps(prompt))
if extra_pnginfo is not None:
inital_exif = 0x010f
for x in extra_pnginfo:
metadata[inital_exif] = "{}:{}".format(x, json.dumps(extra_pnginfo[x]))
inital_exif -= 1
if num_frames == 0:
num_frames = len(pil_images)
c = len(pil_images)
for i in range(0, c, num_frames):
file = f"{filename}_{counter:05}_.webp"
pil_images[i].save(os.path.join(full_output_folder, file), save_all=True, duration=int(1000.0/fps), append_images=pil_images[i + 1:i + num_frames], exif=metadata, lossless=lossless, quality=quality, method=method)
results.append({
"filename": file,
"subfolder": subfolder,
"type": self.type
})
counter += 1
animated = num_frames != 1
return { "ui": { "images": results, "animated": (animated,) } }
class SaveAnimatedPNG:
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
self.type = "output"
self.prefix_append = ""
@classmethod
def INPUT_TYPES(s):
return {"required":
{"images": ("IMAGE", ),
"filename_prefix": ("STRING", {"default": "ComfyUI"}),
"fps": ("FLOAT", {"default": 6.0, "min": 0.01, "max": 1000.0, "step": 0.01}),
"compress_level": ("INT", {"default": 4, "min": 0, "max": 9})
},
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
RETURN_TYPES = ()
FUNCTION = "save_images"
OUTPUT_NODE = True
CATEGORY = "image/animation"
def save_images(self, images, fps, compress_level, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
filename_prefix += self.prefix_append
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
results = list()
pil_images = []
for image in images:
i = 255. * image.cpu().numpy()
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
pil_images.append(img)
metadata = None
if not args.disable_metadata:
metadata = PngInfo()
if prompt is not None:
metadata.add(b"comf", "prompt".encode("latin-1", "strict") + b"\0" + json.dumps(prompt).encode("latin-1", "strict"), after_idat=True)
if extra_pnginfo is not None:
for x in extra_pnginfo:
metadata.add(b"comf", x.encode("latin-1", "strict") + b"\0" + json.dumps(extra_pnginfo[x]).encode("latin-1", "strict"), after_idat=True)
file = f"{filename}_{counter:05}_.png"
pil_images[0].save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=compress_level, save_all=True, duration=int(1000.0/fps), append_images=pil_images[1:])
results.append({
"filename": file,
"subfolder": subfolder,
"type": self.type
})
return { "ui": { "images": results, "animated": (True,)} }
class SVG:
"""
Stores SVG representations via a list of BytesIO objects.
"""
def __init__(self, data: list[BytesIO]):
self.data = data
def combine(self, other: 'SVG') -> 'SVG':
return SVG(self.data + other.data)
@staticmethod
def combine_all(svgs: list['SVG']) -> 'SVG':
all_svgs_list: list[BytesIO] = []
for svg_item in svgs:
all_svgs_list.extend(svg_item.data)
return SVG(all_svgs_list)
class ImageStitch:
"""Upstreamed from https://github.com/kijai/ComfyUI-KJNodes"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image1": ("IMAGE",),
"direction": (["right", "down", "left", "up"], {"default": "right"}),
"match_image_size": ("BOOLEAN", {"default": True}),
"spacing_width": (
"INT",
{"default": 0, "min": 0, "max": 1024, "step": 2},
),
"spacing_color": (
["white", "black", "red", "green", "blue"],
{"default": "white"},
),
},
"optional": {
"image2": ("IMAGE",),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "stitch"
CATEGORY = "image/transform"
DESCRIPTION = """
Stitches image2 to image1 in the specified direction.
If image2 is not provided, returns image1 unchanged.
Optional spacing can be added between images.
"""
def stitch(
self,
image1,
direction,
match_image_size,
spacing_width,
spacing_color,
image2=None,
):
if image2 is None:
return (image1,)
# Handle batch size differences
if image1.shape[0] != image2.shape[0]:
max_batch = max(image1.shape[0], image2.shape[0])
if image1.shape[0] < max_batch:
image1 = torch.cat(
[image1, image1[-1:].repeat(max_batch - image1.shape[0], 1, 1, 1)]
)
if image2.shape[0] < max_batch:
image2 = torch.cat(
[image2, image2[-1:].repeat(max_batch - image2.shape[0], 1, 1, 1)]
)
# Match image sizes if requested
if match_image_size:
h1, w1 = image1.shape[1:3]
h2, w2 = image2.shape[1:3]
aspect_ratio = w2 / h2
if direction in ["left", "right"]:
target_h, target_w = h1, int(h1 * aspect_ratio)
else: # up, down
target_w, target_h = w1, int(w1 / aspect_ratio)
image2 = comfy.utils.common_upscale(
image2.movedim(-1, 1), target_w, target_h, "lanczos", "disabled"
).movedim(1, -1)
color_map = {
"white": 1.0,
"black": 0.0,
"red": (1.0, 0.0, 0.0),
"green": (0.0, 1.0, 0.0),
"blue": (0.0, 0.0, 1.0),
}
color_val = color_map[spacing_color]
# When not matching sizes, pad to align non-concat dimensions
if not match_image_size:
h1, w1 = image1.shape[1:3]
h2, w2 = image2.shape[1:3]
pad_value = 0.0
if not isinstance(color_val, tuple):
pad_value = color_val
if direction in ["left", "right"]:
# For horizontal concat, pad heights to match
if h1 != h2:
target_h = max(h1, h2)
if h1 < target_h:
pad_h = target_h - h1
pad_top, pad_bottom = pad_h // 2, pad_h - pad_h // 2
image1 = torch.nn.functional.pad(image1, (0, 0, 0, 0, pad_top, pad_bottom), mode='constant', value=pad_value)
if h2 < target_h:
pad_h = target_h - h2
pad_top, pad_bottom = pad_h // 2, pad_h - pad_h // 2
image2 = torch.nn.functional.pad(image2, (0, 0, 0, 0, pad_top, pad_bottom), mode='constant', value=pad_value)
else: # up, down
# For vertical concat, pad widths to match
if w1 != w2:
target_w = max(w1, w2)
if w1 < target_w:
pad_w = target_w - w1
pad_left, pad_right = pad_w // 2, pad_w - pad_w // 2
image1 = torch.nn.functional.pad(image1, (0, 0, pad_left, pad_right), mode='constant', value=pad_value)
if w2 < target_w:
pad_w = target_w - w2
pad_left, pad_right = pad_w // 2, pad_w - pad_w // 2
image2 = torch.nn.functional.pad(image2, (0, 0, pad_left, pad_right), mode='constant', value=pad_value)
# Ensure same number of channels
if image1.shape[-1] != image2.shape[-1]:
max_channels = max(image1.shape[-1], image2.shape[-1])
if image1.shape[-1] < max_channels:
image1 = torch.cat(
[
image1,
torch.ones(
*image1.shape[:-1],
max_channels - image1.shape[-1],
device=image1.device,
),
],
dim=-1,
)
if image2.shape[-1] < max_channels:
image2 = torch.cat(
[
image2,
torch.ones(
*image2.shape[:-1],
max_channels - image2.shape[-1],
device=image2.device,
),
],
dim=-1,
)
# Add spacing if specified
if spacing_width > 0:
spacing_width = spacing_width + (spacing_width % 2) # Ensure even
if direction in ["left", "right"]:
spacing_shape = (
image1.shape[0],
max(image1.shape[1], image2.shape[1]),
spacing_width,
image1.shape[-1],
)
else:
spacing_shape = (
image1.shape[0],
spacing_width,
max(image1.shape[2], image2.shape[2]),
image1.shape[-1],
)
spacing = torch.full(spacing_shape, 0.0, device=image1.device)
if isinstance(color_val, tuple):
for i, c in enumerate(color_val):
if i < spacing.shape[-1]:
spacing[..., i] = c
if spacing.shape[-1] == 4: # Add alpha
spacing[..., 3] = 1.0
else:
spacing[..., : min(3, spacing.shape[-1])] = color_val
if spacing.shape[-1] == 4:
spacing[..., 3] = 1.0
# Concatenate images
images = [image2, image1] if direction in ["left", "up"] else [image1, image2]
if spacing_width > 0:
images.insert(1, spacing)
concat_dim = 2 if direction in ["left", "right"] else 1
return (torch.cat(images, dim=concat_dim),)
class ResizeAndPadImage:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"target_width": ("INT", {
"default": 512,
"min": 1,
"max": MAX_RESOLUTION,
"step": 1
}),
"target_height": ("INT", {
"default": 512,
"min": 1,
"max": MAX_RESOLUTION,
"step": 1
}),
"padding_color": (["white", "black"],),
"interpolation": (["area", "bicubic", "nearest-exact", "bilinear", "lanczos"],),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "resize_and_pad"
CATEGORY = "image/transform"
def resize_and_pad(self, image, target_width, target_height, padding_color, interpolation):
batch_size, orig_height, orig_width, channels = image.shape
scale_w = target_width / orig_width
scale_h = target_height / orig_height
scale = min(scale_w, scale_h)
new_width = int(orig_width * scale)
new_height = int(orig_height * scale)
image_permuted = image.permute(0, 3, 1, 2)
resized = comfy.utils.common_upscale(image_permuted, new_width, new_height, interpolation, "disabled")
pad_value = 0.0 if padding_color == "black" else 1.0
padded = torch.full(
(batch_size, channels, target_height, target_width),
pad_value,
dtype=image.dtype,
device=image.device
)
y_offset = (target_height - new_height) // 2
x_offset = (target_width - new_width) // 2
padded[:, :, y_offset:y_offset + new_height, x_offset:x_offset + new_width] = resized
output = padded.permute(0, 2, 3, 1)
return (output,)
class SaveSVGNode:
"""
Save SVG files on disk.
"""
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
self.type = "output"
self.prefix_append = ""
RETURN_TYPES = ()
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value
FUNCTION = "save_svg"
CATEGORY = "image/save" # Changed
OUTPUT_NODE = True
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"svg": ("SVG",), # Changed
"filename_prefix": ("STRING", {"default": "svg/ComfyUI", "tooltip": "The prefix for the file to save. This may include formatting information such as %date:yyyy-MM-dd% or %Empty Latent Image.width% to include values from nodes."})
},
"hidden": {
"prompt": "PROMPT",
"extra_pnginfo": "EXTRA_PNGINFO"
}
}
def save_svg(self, svg: SVG, filename_prefix="svg/ComfyUI", prompt=None, extra_pnginfo=None):
filename_prefix += self.prefix_append
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
results = list()
# Prepare metadata JSON
metadata_dict = {}
if prompt is not None:
metadata_dict["prompt"] = prompt
if extra_pnginfo is not None:
metadata_dict.update(extra_pnginfo)
# Convert metadata to JSON string
metadata_json = json.dumps(metadata_dict, indent=2) if metadata_dict else None
for batch_number, svg_bytes in enumerate(svg.data):
filename_with_batch_num = filename.replace("%batch_num%", str(batch_number))
file = f"{filename_with_batch_num}_{counter:05}_.svg"
# Read SVG content
svg_bytes.seek(0)
svg_content = svg_bytes.read().decode('utf-8')
# Inject metadata if available
if metadata_json:
# Create metadata element with CDATA section
metadata_element = f""" <metadata>
<![CDATA[
{metadata_json}
]]>
</metadata>
"""
# Insert metadata after opening svg tag using regex with a replacement function
def replacement(match):
# match.group(1) contains the captured <svg> tag
return match.group(1) + '\n' + metadata_element
# Apply the substitution
svg_content = re.sub(r'(<svg[^>]*>)', replacement, svg_content, flags=re.UNICODE)
# Write the modified SVG to file
with open(os.path.join(full_output_folder, file), 'wb') as svg_file:
svg_file.write(svg_content.encode('utf-8'))
results.append({
"filename": file,
"subfolder": subfolder,
"type": self.type
})
counter += 1
return { "ui": { "images": results } }
class GetImageSize:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": (IO.IMAGE,),
},
"hidden": {
"unique_id": "UNIQUE_ID",
}
}
RETURN_TYPES = (IO.INT, IO.INT, IO.INT)
RETURN_NAMES = ("width", "height", "batch_size")
FUNCTION = "get_size"
CATEGORY = "image"
DESCRIPTION = """Returns width and height of the image, and passes it through unchanged."""
def get_size(self, image, unique_id=None) -> tuple[int, int]:
height = image.shape[1]
width = image.shape[2]
batch_size = image.shape[0]
# Send progress text to display size on the node
if unique_id:
PromptServer.instance.send_progress_text(f"width: {width}, height: {height}\n batch size: {batch_size}", unique_id)
return width, height, batch_size
class ImageRotate:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": (IO.IMAGE,),
"rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
}}
RETURN_TYPES = (IO.IMAGE,)
FUNCTION = "rotate"
CATEGORY = "image/transform"
def rotate(self, image, rotation):
rotate_by = 0
if rotation.startswith("90"):
rotate_by = 1
elif rotation.startswith("180"):
rotate_by = 2
elif rotation.startswith("270"):
rotate_by = 3
image = torch.rot90(image, k=rotate_by, dims=[2, 1])
return (image,)
class ImageFlip:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": (IO.IMAGE,),
"flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
}}
RETURN_TYPES = (IO.IMAGE,)
FUNCTION = "flip"
CATEGORY = "image/transform"
def flip(self, image, flip_method):
if flip_method.startswith("x"):
image = torch.flip(image, dims=[1])
elif flip_method.startswith("y"):
image = torch.flip(image, dims=[2])
return (image,)
NODE_CLASS_MAPPINGS = {
"ImageCrop": ImageCrop,
"RepeatImageBatch": RepeatImageBatch,
"ImageFromBatch": ImageFromBatch,
"ImageAddNoise": ImageAddNoise,
"SaveAnimatedWEBP": SaveAnimatedWEBP,
"SaveAnimatedPNG": SaveAnimatedPNG,
"SaveSVGNode": SaveSVGNode,
"ImageStitch": ImageStitch,
"ResizeAndPadImage": ResizeAndPadImage,
"GetImageSize": GetImageSize,
"ImageRotate": ImageRotate,
"ImageFlip": ImageFlip,
}
|