Spaces:
Runtime error
Runtime error
import torch | |
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from PIL import Image | |
from tqdm import tqdm | |
class StableDiffusion: | |
def __init__( | |
self, | |
vae_arch="CompVis/stable-diffusion-v1-4", | |
tokenizer_arch="openai/clip-vit-large-patch14", | |
encoder_arch="openai/clip-vit-large-patch14", | |
unet_arch="CompVis/stable-diffusion-v1-4", | |
device="cpu", | |
height=512, | |
width=512, | |
num_inference_steps=30, | |
guidance_scale=7.5, | |
manual_seed=1, | |
) -> None: | |
self.height = height # default height of Stable Diffusion | |
self.width = width # default width of Stable Diffusion | |
self.num_inference_steps = num_inference_steps # Number of denoising steps | |
self.guidance_scale = guidance_scale # Scale for classifier-free guidance | |
self.device = device | |
self.manual_seed = manual_seed | |
vae = AutoencoderKL.from_pretrained(vae_arch, subfolder="vae") | |
# Load the tokenizer and text encoder to tokenize and encode the text. | |
self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer_arch) | |
text_encoder = CLIPTextModel.from_pretrained(encoder_arch) | |
# The UNet model for generating the latents. | |
unet = UNet2DConditionModel.from_pretrained(unet_arch, subfolder="unet") | |
# The noise scheduler | |
self.scheduler = LMSDiscreteScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
num_train_timesteps=1000, | |
) | |
# To the GPU we go! | |
self.vae = vae.to(self.device) | |
self.text_encoder = text_encoder.to(self.device) | |
self.unet = unet.to(self.device) | |
self.token_emb_layer = text_encoder.text_model.embeddings.token_embedding | |
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding | |
position_ids = text_encoder.text_model.embeddings.position_ids[:, :77] | |
self.position_embeddings = pos_emb_layer(position_ids) | |
def get_output_embeds(self, input_embeddings): | |
# CLIP's text model uses causal mask, so we prepare it here: | |
bsz, seq_len = input_embeddings.shape[:2] | |
causal_attention_mask = ( | |
self.text_encoder.text_model._build_causal_attention_mask( | |
bsz, seq_len, dtype=input_embeddings.dtype | |
) | |
) | |
# Getting the output embeddings involves calling the model with passing output_hidden_states=True | |
# so that it doesn't just return the pooled final predictions: | |
encoder_outputs = self.text_encoder.text_model.encoder( | |
inputs_embeds=input_embeddings, | |
attention_mask=None, # We aren't using an attention mask so that can be None | |
causal_attention_mask=causal_attention_mask.to(self.device), | |
output_attentions=None, | |
output_hidden_states=True, # We want the output embs not the final output | |
return_dict=None, | |
) | |
# We're interested in the output hidden state only | |
output = encoder_outputs[0] | |
# There is a final layer norm we need to pass these through | |
output = self.text_encoder.text_model.final_layer_norm(output) | |
# And now they're ready! | |
return output | |
def set_timesteps(self, scheduler, num_inference_steps): | |
scheduler.set_timesteps(num_inference_steps) | |
scheduler.timesteps = scheduler.timesteps.to(torch.float32) | |
def latents_to_pil(self, latents): | |
# bath of latents -> list of images | |
latents = (1 / 0.18215) * latents | |
with torch.no_grad(): | |
image = self.vae.decode(latents).sample | |
image = (image / 2 + 0.5).clamp(0, 1) | |
image = image.detach().cpu().permute(0, 2, 3, 1).numpy() | |
images = (image * 255).round().astype("uint8") | |
pil_images = [Image.fromarray(image) for image in images] | |
return pil_images | |
def generate_with_embs(self, text_embeddings, text_input, loss_fn, loss_scale): | |
generator = torch.manual_seed( | |
self.manual_seed | |
) # Seed generator to create the inital latent noise | |
batch_size = 1 | |
max_length = text_input.input_ids.shape[-1] | |
uncond_input = self.tokenizer( | |
[""] * batch_size, | |
padding="max_length", | |
max_length=max_length, | |
return_tensors="pt", | |
) | |
with torch.no_grad(): | |
uncond_embeddings = self.text_encoder( | |
uncond_input.input_ids.to(self.device) | |
)[0] | |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
# Prep Scheduler | |
self.set_timesteps(self.scheduler, self.num_inference_steps) | |
# Prep latents | |
latents = torch.randn( | |
(batch_size, self.unet.in_channels, self.height // 8, self.width // 8), | |
generator=generator, | |
) | |
latents = latents.to(self.device) | |
latents = latents * self.scheduler.init_noise_sigma | |
# Loop | |
for i, t in tqdm( | |
enumerate(self.scheduler.timesteps), total=len(self.scheduler.timesteps) | |
): | |
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes. | |
latent_model_input = torch.cat([latents] * 2) | |
sigma = self.scheduler.sigmas[i] | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
# predict the noise residual | |
with torch.no_grad(): | |
noise_pred = self.unet( | |
latent_model_input, t, encoder_hidden_states=text_embeddings | |
)["sample"] | |
# perform guidance | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + self.guidance_scale * ( | |
noise_pred_text - noise_pred_uncond | |
) | |
if i % 5 == 0: | |
# Requires grad on the latents | |
latents = latents.detach().requires_grad_() | |
# Get the predicted x0: | |
# latents_x0 = latents - sigma * noise_pred | |
latents_x0 = self.scheduler.step( | |
noise_pred, t, latents | |
).pred_original_sample | |
# Decode to image space | |
denoised_images = ( | |
self.vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 | |
) # range (0, 1) | |
# Calculate loss | |
loss = loss_fn(denoised_images) * loss_scale | |
# Occasionally print it out | |
# if i % 10 == 0: | |
# print(i, "loss:", loss.item()) | |
# Get gradient | |
cond_grad = torch.autograd.grad(loss, latents)[0] | |
# Modify the latents based on this gradient | |
latents = latents.detach() - cond_grad * sigma**2 | |
self.scheduler._step_index = self.scheduler._step_index - 1 | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents).prev_sample | |
return self.latents_to_pil(latents)[0] | |
def generate_image( | |
self, | |
prompt="A campfire (oil on canvas)", | |
loss_fn=None, | |
loss_scale=200, | |
concept_embed=None, # birb_embed["<birb-style>"] | |
): | |
prompt += " in the style of cs" | |
text_input = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
input_ids = text_input.input_ids.to(self.device) | |
custom_style_token = self.tokenizer.encode("cs", add_special_tokens=False)[0] | |
# Get token embeddings | |
token_embeddings = self.token_emb_layer(input_ids) | |
# The new embedding - our special birb word | |
embed_key = list(concept_embed.keys())[0] | |
replacement_token_embedding = concept_embed[embed_key] | |
# Insert this into the token embeddings | |
token_embeddings[ | |
0, torch.where(input_ids[0] == custom_style_token) | |
] = replacement_token_embedding.to(self.device) | |
# token_embeddings = token_embeddings + (replacement_token_embedding * 0.9) | |
# Combine with pos embs | |
input_embeddings = token_embeddings + self.position_embeddings | |
# Feed through to get final output embs | |
modified_output_embeddings = self.get_output_embeds(input_embeddings) | |
# And generate an image with this: | |
generated_image = self.generate_with_embs( | |
modified_output_embeddings, text_input, loss_fn, loss_scale | |
) | |
return generated_image | |