Spaces:
Runtime error
Runtime error
File size: 8,842 Bytes
b87b512 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import torch
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
from transformers import CLIPTextModel, CLIPTokenizer
from PIL import Image
from tqdm import tqdm
class StableDiffusion:
def __init__(
self,
vae_arch="CompVis/stable-diffusion-v1-4",
tokenizer_arch="openai/clip-vit-large-patch14",
encoder_arch="openai/clip-vit-large-patch14",
unet_arch="CompVis/stable-diffusion-v1-4",
device="cpu",
height=512,
width=512,
num_inference_steps=30,
guidance_scale=7.5,
manual_seed=1,
) -> None:
self.height = height # default height of Stable Diffusion
self.width = width # default width of Stable Diffusion
self.num_inference_steps = num_inference_steps # Number of denoising steps
self.guidance_scale = guidance_scale # Scale for classifier-free guidance
self.device = device
self.manual_seed = manual_seed
vae = AutoencoderKL.from_pretrained(vae_arch, subfolder="vae")
# Load the tokenizer and text encoder to tokenize and encode the text.
self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer_arch)
text_encoder = CLIPTextModel.from_pretrained(encoder_arch)
# The UNet model for generating the latents.
unet = UNet2DConditionModel.from_pretrained(unet_arch, subfolder="unet")
# The noise scheduler
self.scheduler = LMSDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
)
# To the GPU we go!
self.vae = vae.to(self.device)
self.text_encoder = text_encoder.to(self.device)
self.unet = unet.to(self.device)
self.token_emb_layer = text_encoder.text_model.embeddings.token_embedding
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding
position_ids = text_encoder.text_model.embeddings.position_ids[:, :77]
self.position_embeddings = pos_emb_layer(position_ids)
def get_output_embeds(self, input_embeddings):
# CLIP's text model uses causal mask, so we prepare it here:
bsz, seq_len = input_embeddings.shape[:2]
causal_attention_mask = (
self.text_encoder.text_model._build_causal_attention_mask(
bsz, seq_len, dtype=input_embeddings.dtype
)
)
# Getting the output embeddings involves calling the model with passing output_hidden_states=True
# so that it doesn't just return the pooled final predictions:
encoder_outputs = self.text_encoder.text_model.encoder(
inputs_embeds=input_embeddings,
attention_mask=None, # We aren't using an attention mask so that can be None
causal_attention_mask=causal_attention_mask.to(self.device),
output_attentions=None,
output_hidden_states=True, # We want the output embs not the final output
return_dict=None,
)
# We're interested in the output hidden state only
output = encoder_outputs[0]
# There is a final layer norm we need to pass these through
output = self.text_encoder.text_model.final_layer_norm(output)
# And now they're ready!
return output
def set_timesteps(self, scheduler, num_inference_steps):
scheduler.set_timesteps(num_inference_steps)
scheduler.timesteps = scheduler.timesteps.to(torch.float32)
def latents_to_pil(self, latents):
# bath of latents -> list of images
latents = (1 / 0.18215) * latents
with torch.no_grad():
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
images = (image * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
return pil_images
def generate_with_embs(self, text_embeddings, text_input, loss_fn, loss_scale):
generator = torch.manual_seed(
self.manual_seed
) # Seed generator to create the inital latent noise
batch_size = 1
max_length = text_input.input_ids.shape[-1]
uncond_input = self.tokenizer(
[""] * batch_size,
padding="max_length",
max_length=max_length,
return_tensors="pt",
)
with torch.no_grad():
uncond_embeddings = self.text_encoder(
uncond_input.input_ids.to(self.device)
)[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# Prep Scheduler
self.set_timesteps(self.scheduler, self.num_inference_steps)
# Prep latents
latents = torch.randn(
(batch_size, self.unet.in_channels, self.height // 8, self.width // 8),
generator=generator,
)
latents = latents.to(self.device)
latents = latents * self.scheduler.init_noise_sigma
# Loop
for i, t in tqdm(
enumerate(self.scheduler.timesteps), total=len(self.scheduler.timesteps)
):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
sigma = self.scheduler.sigmas[i]
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
with torch.no_grad():
noise_pred = self.unet(
latent_model_input, t, encoder_hidden_states=text_embeddings
)["sample"]
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (
noise_pred_text - noise_pred_uncond
)
if i % 5 == 0:
# Requires grad on the latents
latents = latents.detach().requires_grad_()
# Get the predicted x0:
# latents_x0 = latents - sigma * noise_pred
latents_x0 = self.scheduler.step(
noise_pred, t, latents
).pred_original_sample
# Decode to image space
denoised_images = (
self.vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5
) # range (0, 1)
# Calculate loss
loss = loss_fn(denoised_images) * loss_scale
# Occasionally print it out
# if i % 10 == 0:
# print(i, "loss:", loss.item())
# Get gradient
cond_grad = torch.autograd.grad(loss, latents)[0]
# Modify the latents based on this gradient
latents = latents.detach() - cond_grad * sigma**2
self.scheduler._step_index = self.scheduler._step_index - 1
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents).prev_sample
return self.latents_to_pil(latents)[0]
def generate_image(
self,
prompt="A campfire (oil on canvas)",
loss_fn=None,
loss_scale=200,
concept_embed=None, # birb_embed["<birb-style>"]
):
prompt += " in the style of cs"
text_input = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
input_ids = text_input.input_ids.to(self.device)
custom_style_token = self.tokenizer.encode("cs", add_special_tokens=False)[0]
# Get token embeddings
token_embeddings = self.token_emb_layer(input_ids)
# The new embedding - our special birb word
embed_key = list(concept_embed.keys())[0]
replacement_token_embedding = concept_embed[embed_key]
# Insert this into the token embeddings
token_embeddings[
0, torch.where(input_ids[0] == custom_style_token)
] = replacement_token_embedding.to(self.device)
# token_embeddings = token_embeddings + (replacement_token_embedding * 0.9)
# Combine with pos embs
input_embeddings = token_embeddings + self.position_embeddings
# Feed through to get final output embs
modified_output_embeddings = self.get_output_embeds(input_embeddings)
# And generate an image with this:
generated_image = self.generate_with_embs(
modified_output_embeddings, text_input, loss_fn, loss_scale
)
return generated_image
|