Spaces:
Runtime error
Runtime error
Styles Used:
Result of Experiments with different styles:
Prompt: "a cat and dog in the style of cs"
"cs" in the prompt refers to "custom style" whose embedding is replaced by each of the concept embeddings shown below
Prompt: "dolphin swimming on Mars in the style of cs"
Result of Experiments with Guidance loss functions:
Prompt: "a mouse in the style of cs"
Loss Function:
python def loss_fn(images): return images.mean()
def loss_fn(images):
return -images.median()/3
def loss_fn(images):
error = (images - images.min()) / 255*(images.max() - images.min())
return error.mean()
Prompt: "angry german shephard in the style of cs"
def loss_fn(images):
error1 = torch.abs(images[:, 0] - 0.9)
error2 = torch.abs(images[:, 1] - 0.9)
error3 = torch.abs(images[:, 2] - 0.9)
return (
torch.sin(error1.mean()) + torch.sin(error2.mean()) + torch.sin(error3.mean())
) / 3
Prompt: "A campfire (oil on canvas)"
def loss_fn(images):
error1 = torch.abs(images[:, 0] - 0.9)
error2 = torch.abs(images[:, 1] - 0.9)
error3 = torch.abs(images[:, 2] - 0.9)
return (
torch.sin((error1 * error2 * error3)).mean()
+ torch.cos((error1 * error2 * error3)).mean()
)
def loss_fn(images):
error1 = torch.abs(images[:, 0] - 0.9)
error2 = torch.abs(images[:, 1] - 0.9)
error3 = torch.abs(images[:, 2] - 0.9)
return (
torch.sin(error1.mean()) + torch.sin(error2.mean()) + torch.sin(error3.mean())
) / 3