Holo1 / app.py
johnbridges's picture
.
9792fe2
raw
history blame
13 kB
# requirements.txt stays fine, but for CUDA wheels you usually want:
# pip install --index-url https://download.pytorch.org/whl/cu121 torch torchvision --upgrade
import gradio as gr
import json, os, re, traceback
from typing import Any, List, Dict
import spaces
import torch
from PIL import Image, ImageDraw
import requests
from transformers import AutoModelForImageTextToText, AutoProcessor
from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize
# --- Configuration ---
MODEL_ID = "Hcompany/Holo1-3B"
# ---------------- Device / DType helpers ----------------
def pick_device() -> str:
forced = os.getenv("FORCE_DEVICE", "").lower().strip()
if forced in {"cpu", "cuda", "mps"}:
return forced
if torch.cuda.is_available():
return "cuda"
if getattr(torch.backends, "mps", None) and torch.backends.mps.is_available():
return "mps"
return "cpu"
def pick_dtype(device: str) -> torch.dtype:
if device == "cuda":
major, minor = torch.cuda.get_device_capability() # e.g. (8, 0) for A100
# Prefer bfloat16 on Ampere+ (>= 8.x). Otherwise float16.
return torch.bfloat16 if major >= 8 else torch.float16
if device == "mps":
# MPS autocast supports float16 well; bfloat16 is improving but use float16 for safety.
return torch.float16
return torch.float32 # CPU
def move_to_device(batch, device: str):
if isinstance(batch, dict):
return {k: (v.to(device, non_blocking=True) if hasattr(v, "to") else v) for k, v in batch.items()}
if hasattr(batch, "to"):
return batch.to(device, non_blocking=True)
return batch
# --- Chat/template helpers (unchanged except minor tidy) ---
def apply_chat_template_compat(processor, messages: List[Dict[str, Any]]) -> str:
tok = getattr(processor, "tokenizer", None)
if hasattr(processor, "apply_chat_template"):
return processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
if tok is not None and hasattr(tok, "apply_chat_template"):
return tok.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
texts = []
for m in messages:
for c in m.get("content", []):
if isinstance(c, dict) and c.get("type") == "text":
texts.append(c.get("text", ""))
return "\n".join(texts)
def batch_decode_compat(processor, token_id_batches, **kw):
tok = getattr(processor, "tokenizer", None)
if tok is not None and hasattr(tok, "batch_decode"):
return tok.batch_decode(token_id_batches, **kw)
if hasattr(processor, "batch_decode"):
return processor.batch_decode(token_id_batches, **kw)
raise AttributeError("No batch_decode available on processor or tokenizer.")
def get_image_proc_params(processor) -> Dict[str, int]:
ip = getattr(processor, "image_processor", None)
return {
"patch_size": getattr(ip, "patch_size", 14),
"merge_size": getattr(ip, "merge_size", 1),
"min_pixels": getattr(ip, "min_pixels", 256 * 256),
"max_pixels": getattr(ip, "max_pixels", 1280 * 1280),
}
def trim_generated(generated_ids, inputs):
in_ids = getattr(inputs, "input_ids", None)
if in_ids is None and isinstance(inputs, dict):
in_ids = inputs.get("input_ids", None)
if in_ids is None:
return [out_ids for out_ids in generated_ids]
return [out_ids[len(in_seq):] for in_seq, out_ids in zip(in_ids, generated_ids)]
# --- Load model/processor once with correct device/dtype ---
active_device = pick_device()
active_dtype = pick_dtype(active_device)
# Optional perf knobs for CUDA
if active_device == "cuda":
torch.backends.cuda.matmul.allow_tf32 = True
torch.set_float32_matmul_precision("high") # better perf on Ampere+
print(f"Loading model and processor for {MODEL_ID} on device={active_device}, dtype={active_dtype}...")
model = None
processor = None
model_loaded = False
load_error_message = ""
try:
# Note: for single-GPU we explicitly set dtype then .to(device).
# If you want HF Accelerate sharding: set device_map="auto" and drop explicit .to().
model = AutoModelForImageTextToText.from_pretrained(
MODEL_ID,
torch_dtype=active_dtype if active_device != "cpu" else torch.float32,
trust_remote_code=True,
)
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
# Move model to device and eval
model.to(active_device)
model.eval()
model_loaded = True
print("Model and processor loaded successfully.")
except Exception as e:
load_error_message = (
f"Error loading model/processor: {e}\n"
"This might be due to CUDA/MPS availability, model ID, or wheel incompatibility.\n"
"Check the full traceback in the logs."
)
print(load_error_message)
traceback.print_exc()
# --- Prompt builder ---
def get_localization_prompt(pil_image: Image.Image, instruction: str) -> List[dict]:
guidelines: str = (
"Localize an element on the GUI image according to my instructions and "
"output a click position as Click(x, y) with x num pixels from the left edge "
"and y num pixels from the top edge."
)
return [
{
"role": "user",
"content": [
{"type": "image", "image": pil_image},
{"type": "text", "text": f"{guidelines}\n{instruction}"}
],
}
]
# --- Inference (device-agnostic; uses AMP on GPU) ---
@torch.inference_mode()
def run_inference_localization(
messages_for_template: List[dict[str, Any]],
pil_image_for_processing: Image.Image
) -> str:
try:
# 1) Build prompt text
text_prompt = apply_chat_template_compat(processor, messages_for_template)
# 2) Prepare inputs (text + image)
inputs = processor(
text=[text_prompt],
images=[pil_image_for_processing],
padding=True,
return_tensors="pt",
)
inputs = move_to_device(inputs, active_device)
# 3) Generate (deterministic). Use autocast on GPU/MPS.
use_amp = active_device in {"cuda", "mps"}
amp_dtype = active_dtype if active_device == "cuda" else torch.float16
if use_amp:
with torch.cuda.amp.autocast(enabled=(active_device == "cuda"), dtype=amp_dtype):
generated_ids = model.generate(
**inputs,
max_new_tokens=128,
do_sample=False,
)
else:
generated_ids = model.generate(
**inputs,
max_new_tokens=128,
do_sample=False,
)
# 4) Trim prompt tokens if possible
generated_ids_trimmed = trim_generated(generated_ids, inputs)
# 5) Decode
decoded_output = batch_decode_compat(
processor,
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)
return decoded_output[0] if decoded_output else ""
except Exception as e:
print(f"Error during model inference: {e}")
traceback.print_exc()
raise
# --- Gradio processing function ---
def predict_click_location(input_pil_image: Image.Image, instruction: str):
if not model_loaded or not processor or not model:
return f"Model not loaded. Error: {load_error_message}", None
if not input_pil_image:
return "No image provided. Please upload an image.", None
if not instruction or instruction.strip() == "":
return "No instruction provided. Please type an instruction.", input_pil_image.copy().convert("RGB")
# 1) Resize according to image processor params (safe defaults if missing)
try:
ip = get_image_proc_params(processor)
resized_height, resized_width = smart_resize(
input_pil_image.height,
input_pil_image.width,
factor=ip["patch_size"] * ip["merge_size"],
min_pixels=ip["min_pixels"],
max_pixels=ip["max_pixels"],
)
resized_image = input_pil_image.resize(
size=(resized_width, resized_height),
resample=Image.Resampling.LANCZOS
)
except Exception as e:
print(f"Error resizing image: {e}")
traceback.print_exc()
return f"Error resizing image: {e}", input_pil_image.copy().convert("RGB")
# 2) Build messages with image + instruction
messages = get_localization_prompt(resized_image, instruction)
# 3) Run inference
try:
coordinates_str = run_inference_localization(messages, resized_image)
except Exception as e:
return f"Error during model inference: {e}", resized_image.copy().convert("RGB")
# 4) Parse coordinates and draw marker
output_image_with_click = resized_image.copy().convert("RGB")
match = re.search(r"Click\((\d+),\s*(\d+)\)", coordinates_str)
if match:
try:
x = int(match.group(1)); y = int(match.group(2))
draw = ImageDraw.Draw(output_image_with_click)
radius = max(5, min(resized_width // 100, resized_height // 100, 15))
bbox = (x - radius, y - radius, x + radius, y + radius)
draw.ellipse(bbox, outline="red", width=max(2, radius // 4))
print(f"Predicted and drawn click at: ({x}, {y}) on resized image ({resized_width}x{resized_height})")
except Exception as e:
print(f"Error drawing on image: {e}")
traceback.print_exc()
else:
print(f"Could not parse 'Click(x, y)' from model output: {coordinates_str}")
return coordinates_str, output_image_with_click
# --- Load Example Data ---
example_image = None
example_instruction = "Enter the server address readyforquantum.com to check its security"
try:
example_image_url = "https://readyforquantum.com/img/screentest.jpg"
example_image = Image.open(requests.get(example_image_url, stream=True).raw)
except Exception as e:
print(f"Could not load example image from URL: {e}")
traceback.print_exc()
try:
example_image = Image.new("RGB", (200, 150), color="lightgray")
draw = ImageDraw.Draw(example_image)
draw.text((10, 10), "Example image\nfailed to load", fill="black")
except Exception:
pass
# --- Gradio UI ---
title = "Holo1-3B: Holo1 Localization Demo"
article = f"""
<p style='text-align: center'>
Device: <b>{active_device}</b> &nbsp;|&nbsp; DType: <b>{str(active_dtype).replace('torch.', '')}</b> &nbsp;|&nbsp;
Model: <a href='https://huggingface.co/{MODEL_ID}' target='_blank'>{MODEL_ID}</a> by HCompany |
Paper: <a href='https://cdn.prod.website-files.com/67e2dbd9acff0c50d4c8a80c/683ec8095b353e8b38317f80_h_tech_report_v1.pdf' target='_blank'>HCompany Tech Report</a> |
Blog: <a href='https://www.hcompany.ai/surfer-h' target='_blank'>Surfer-H Blog Post</a>
</p>
"""
if not model_loaded:
with gr.Blocks() as demo:
gr.Markdown(f"# <center>⚠️ Error: Model Failed to Load ⚠️</center>")
gr.Markdown(f"<center>{load_error_message}</center>")
gr.Markdown("<center>See logs for the full traceback.</center>")
else:
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(f"<h1 style='text-align: center;'>{title}</h1>")
gr.Markdown(article)
with gr.Row():
with gr.Column(scale=1):
input_image_component = gr.Image(type="pil", label="Input UI Image", height=400)
instruction_component = gr.Textbox(
label="Instruction",
placeholder="e.g., Click the 'Login' button",
info="Type the action you want the model to localize on the image."
)
submit_button = gr.Button("Localize Click", variant="primary")
with gr.Column(scale=1):
output_coords_component = gr.Textbox(
label="Predicted Coordinates (Format: Click(x, y))",
interactive=False
)
output_image_component = gr.Image(
type="pil",
label="Image with Predicted Click Point",
height=400,
interactive=False
)
if example_image:
gr.Examples(
examples=[[example_image, example_instruction]],
inputs=[input_image_component, instruction_component],
outputs=[output_coords_component, output_image_component],
fn=predict_click_location,
cache_examples="lazy",
)
submit_button.click(
fn=predict_click_location,
inputs=[input_image_component, instruction_component],
outputs=[output_coords_component, output_image_component]
)
if __name__ == "__main__":
demo.launch(debug=True)