File size: 13,001 Bytes
9792fe2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
# requirements.txt stays fine, but for CUDA wheels you usually want:
# pip install --index-url https://download.pytorch.org/whl/cu121 torch torchvision --upgrade
import gradio as gr
import json, os, re, traceback
from typing import Any, List, Dict
import spaces
import torch
from PIL import Image, ImageDraw
import requests
from transformers import AutoModelForImageTextToText, AutoProcessor
from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize
# --- Configuration ---
MODEL_ID = "Hcompany/Holo1-3B"
# ---------------- Device / DType helpers ----------------
def pick_device() -> str:
forced = os.getenv("FORCE_DEVICE", "").lower().strip()
if forced in {"cpu", "cuda", "mps"}:
return forced
if torch.cuda.is_available():
return "cuda"
if getattr(torch.backends, "mps", None) and torch.backends.mps.is_available():
return "mps"
return "cpu"
def pick_dtype(device: str) -> torch.dtype:
if device == "cuda":
major, minor = torch.cuda.get_device_capability() # e.g. (8, 0) for A100
# Prefer bfloat16 on Ampere+ (>= 8.x). Otherwise float16.
return torch.bfloat16 if major >= 8 else torch.float16
if device == "mps":
# MPS autocast supports float16 well; bfloat16 is improving but use float16 for safety.
return torch.float16
return torch.float32 # CPU
def move_to_device(batch, device: str):
if isinstance(batch, dict):
return {k: (v.to(device, non_blocking=True) if hasattr(v, "to") else v) for k, v in batch.items()}
if hasattr(batch, "to"):
return batch.to(device, non_blocking=True)
return batch
# --- Chat/template helpers (unchanged except minor tidy) ---
def apply_chat_template_compat(processor, messages: List[Dict[str, Any]]) -> str:
tok = getattr(processor, "tokenizer", None)
if hasattr(processor, "apply_chat_template"):
return processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
if tok is not None and hasattr(tok, "apply_chat_template"):
return tok.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
texts = []
for m in messages:
for c in m.get("content", []):
if isinstance(c, dict) and c.get("type") == "text":
texts.append(c.get("text", ""))
return "\n".join(texts)
def batch_decode_compat(processor, token_id_batches, **kw):
tok = getattr(processor, "tokenizer", None)
if tok is not None and hasattr(tok, "batch_decode"):
return tok.batch_decode(token_id_batches, **kw)
if hasattr(processor, "batch_decode"):
return processor.batch_decode(token_id_batches, **kw)
raise AttributeError("No batch_decode available on processor or tokenizer.")
def get_image_proc_params(processor) -> Dict[str, int]:
ip = getattr(processor, "image_processor", None)
return {
"patch_size": getattr(ip, "patch_size", 14),
"merge_size": getattr(ip, "merge_size", 1),
"min_pixels": getattr(ip, "min_pixels", 256 * 256),
"max_pixels": getattr(ip, "max_pixels", 1280 * 1280),
}
def trim_generated(generated_ids, inputs):
in_ids = getattr(inputs, "input_ids", None)
if in_ids is None and isinstance(inputs, dict):
in_ids = inputs.get("input_ids", None)
if in_ids is None:
return [out_ids for out_ids in generated_ids]
return [out_ids[len(in_seq):] for in_seq, out_ids in zip(in_ids, generated_ids)]
# --- Load model/processor once with correct device/dtype ---
active_device = pick_device()
active_dtype = pick_dtype(active_device)
# Optional perf knobs for CUDA
if active_device == "cuda":
torch.backends.cuda.matmul.allow_tf32 = True
torch.set_float32_matmul_precision("high") # better perf on Ampere+
print(f"Loading model and processor for {MODEL_ID} on device={active_device}, dtype={active_dtype}...")
model = None
processor = None
model_loaded = False
load_error_message = ""
try:
# Note: for single-GPU we explicitly set dtype then .to(device).
# If you want HF Accelerate sharding: set device_map="auto" and drop explicit .to().
model = AutoModelForImageTextToText.from_pretrained(
MODEL_ID,
torch_dtype=active_dtype if active_device != "cpu" else torch.float32,
trust_remote_code=True,
)
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
# Move model to device and eval
model.to(active_device)
model.eval()
model_loaded = True
print("Model and processor loaded successfully.")
except Exception as e:
load_error_message = (
f"Error loading model/processor: {e}\n"
"This might be due to CUDA/MPS availability, model ID, or wheel incompatibility.\n"
"Check the full traceback in the logs."
)
print(load_error_message)
traceback.print_exc()
# --- Prompt builder ---
def get_localization_prompt(pil_image: Image.Image, instruction: str) -> List[dict]:
guidelines: str = (
"Localize an element on the GUI image according to my instructions and "
"output a click position as Click(x, y) with x num pixels from the left edge "
"and y num pixels from the top edge."
)
return [
{
"role": "user",
"content": [
{"type": "image", "image": pil_image},
{"type": "text", "text": f"{guidelines}\n{instruction}"}
],
}
]
# --- Inference (device-agnostic; uses AMP on GPU) ---
@torch.inference_mode()
def run_inference_localization(
messages_for_template: List[dict[str, Any]],
pil_image_for_processing: Image.Image
) -> str:
try:
# 1) Build prompt text
text_prompt = apply_chat_template_compat(processor, messages_for_template)
# 2) Prepare inputs (text + image)
inputs = processor(
text=[text_prompt],
images=[pil_image_for_processing],
padding=True,
return_tensors="pt",
)
inputs = move_to_device(inputs, active_device)
# 3) Generate (deterministic). Use autocast on GPU/MPS.
use_amp = active_device in {"cuda", "mps"}
amp_dtype = active_dtype if active_device == "cuda" else torch.float16
if use_amp:
with torch.cuda.amp.autocast(enabled=(active_device == "cuda"), dtype=amp_dtype):
generated_ids = model.generate(
**inputs,
max_new_tokens=128,
do_sample=False,
)
else:
generated_ids = model.generate(
**inputs,
max_new_tokens=128,
do_sample=False,
)
# 4) Trim prompt tokens if possible
generated_ids_trimmed = trim_generated(generated_ids, inputs)
# 5) Decode
decoded_output = batch_decode_compat(
processor,
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)
return decoded_output[0] if decoded_output else ""
except Exception as e:
print(f"Error during model inference: {e}")
traceback.print_exc()
raise
# --- Gradio processing function ---
def predict_click_location(input_pil_image: Image.Image, instruction: str):
if not model_loaded or not processor or not model:
return f"Model not loaded. Error: {load_error_message}", None
if not input_pil_image:
return "No image provided. Please upload an image.", None
if not instruction or instruction.strip() == "":
return "No instruction provided. Please type an instruction.", input_pil_image.copy().convert("RGB")
# 1) Resize according to image processor params (safe defaults if missing)
try:
ip = get_image_proc_params(processor)
resized_height, resized_width = smart_resize(
input_pil_image.height,
input_pil_image.width,
factor=ip["patch_size"] * ip["merge_size"],
min_pixels=ip["min_pixels"],
max_pixels=ip["max_pixels"],
)
resized_image = input_pil_image.resize(
size=(resized_width, resized_height),
resample=Image.Resampling.LANCZOS
)
except Exception as e:
print(f"Error resizing image: {e}")
traceback.print_exc()
return f"Error resizing image: {e}", input_pil_image.copy().convert("RGB")
# 2) Build messages with image + instruction
messages = get_localization_prompt(resized_image, instruction)
# 3) Run inference
try:
coordinates_str = run_inference_localization(messages, resized_image)
except Exception as e:
return f"Error during model inference: {e}", resized_image.copy().convert("RGB")
# 4) Parse coordinates and draw marker
output_image_with_click = resized_image.copy().convert("RGB")
match = re.search(r"Click\((\d+),\s*(\d+)\)", coordinates_str)
if match:
try:
x = int(match.group(1)); y = int(match.group(2))
draw = ImageDraw.Draw(output_image_with_click)
radius = max(5, min(resized_width // 100, resized_height // 100, 15))
bbox = (x - radius, y - radius, x + radius, y + radius)
draw.ellipse(bbox, outline="red", width=max(2, radius // 4))
print(f"Predicted and drawn click at: ({x}, {y}) on resized image ({resized_width}x{resized_height})")
except Exception as e:
print(f"Error drawing on image: {e}")
traceback.print_exc()
else:
print(f"Could not parse 'Click(x, y)' from model output: {coordinates_str}")
return coordinates_str, output_image_with_click
# --- Load Example Data ---
example_image = None
example_instruction = "Enter the server address readyforquantum.com to check its security"
try:
example_image_url = "https://readyforquantum.com/img/screentest.jpg"
example_image = Image.open(requests.get(example_image_url, stream=True).raw)
except Exception as e:
print(f"Could not load example image from URL: {e}")
traceback.print_exc()
try:
example_image = Image.new("RGB", (200, 150), color="lightgray")
draw = ImageDraw.Draw(example_image)
draw.text((10, 10), "Example image\nfailed to load", fill="black")
except Exception:
pass
# --- Gradio UI ---
title = "Holo1-3B: Holo1 Localization Demo"
article = f"""
<p style='text-align: center'>
Device: <b>{active_device}</b> | DType: <b>{str(active_dtype).replace('torch.', '')}</b> |
Model: <a href='https://huggingface.co/{MODEL_ID}' target='_blank'>{MODEL_ID}</a> by HCompany |
Paper: <a href='https://cdn.prod.website-files.com/67e2dbd9acff0c50d4c8a80c/683ec8095b353e8b38317f80_h_tech_report_v1.pdf' target='_blank'>HCompany Tech Report</a> |
Blog: <a href='https://www.hcompany.ai/surfer-h' target='_blank'>Surfer-H Blog Post</a>
</p>
"""
if not model_loaded:
with gr.Blocks() as demo:
gr.Markdown(f"# <center>⚠️ Error: Model Failed to Load ⚠️</center>")
gr.Markdown(f"<center>{load_error_message}</center>")
gr.Markdown("<center>See logs for the full traceback.</center>")
else:
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(f"<h1 style='text-align: center;'>{title}</h1>")
gr.Markdown(article)
with gr.Row():
with gr.Column(scale=1):
input_image_component = gr.Image(type="pil", label="Input UI Image", height=400)
instruction_component = gr.Textbox(
label="Instruction",
placeholder="e.g., Click the 'Login' button",
info="Type the action you want the model to localize on the image."
)
submit_button = gr.Button("Localize Click", variant="primary")
with gr.Column(scale=1):
output_coords_component = gr.Textbox(
label="Predicted Coordinates (Format: Click(x, y))",
interactive=False
)
output_image_component = gr.Image(
type="pil",
label="Image with Predicted Click Point",
height=400,
interactive=False
)
if example_image:
gr.Examples(
examples=[[example_image, example_instruction]],
inputs=[input_image_component, instruction_component],
outputs=[output_coords_component, output_image_component],
fn=predict_click_location,
cache_examples="lazy",
)
submit_button.click(
fn=predict_click_location,
inputs=[input_image_component, instruction_component],
outputs=[output_coords_component, output_image_component]
)
if __name__ == "__main__":
demo.launch(debug=True)
|