Spaces:
Running
Running
File size: 6,304 Bytes
5d6a0bb 00e3b6c 5d6a0bb 9792e33 00e3b6c 5d6a0bb 8d6e841 5d6a0bb 8d6e841 5d6a0bb 9792e33 7e03ca9 19a047e 7e03ca9 19a047e 7e03ca9 19a047e 8d6e841 19a047e 8d6e841 19a047e 7e03ca9 5d6a0bb 19a047e 0fd5b51 19a047e 0fd5b51 00e3b6c 8d6e841 00e3b6c 19a047e 9792e33 461c5b6 8d6e841 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
# -*- encoding: utf-8 -*-
import time
from pathlib import Path
import cv2
import gradio as gr
from rapidocr_onnxruntime import RapidOCR
from utils import visualize
font_dict = {
'ch': 'FZYTK.TTF',
'japan': 'japan.ttc',
'korean': 'korean.ttf',
'en': 'FZYTK.TTF'
}
def inference(img_path, box_thresh=0.5, unclip_ratio=1.6, text_score=0.5,
text_det=None, text_rec=None):
out_log_list = []
det_model_path = str(Path('models') / 'text_det' / text_det)
rec_model_path = str(Path('models') / 'text_rec' / text_rec)
if 'v2' in rec_model_path:
rec_image_shape = [3, 32, 320]
else:
rec_image_shape = [3, 48, 320]
out_log_list.append('Init Model')
s = time.time()
rapid_ocr = RapidOCR(det_model_path=det_model_path,
rec_model_path=rec_model_path,
rec_img_shape=rec_image_shape)
elapse = time.time() - s
if 'ch' in rec_model_path or 'en' in rec_model_path:
lan_name = 'ch'
elif 'japan' in rec_model_path:
lan_name = 'japan'
elif 'korean' in rec_model_path:
lan_name = 'korean'
else:
lan_name = 'ch'
out_log_list.append(f'Init Model cost: {elapse:.5f}')
out_log_list.extend([f'det_model: {det_model_path}',
f'rec_model: {rec_model_path}',
f'rec_image_shape: {rec_image_shape}'])
img = cv2.imread(img_path)
ocr_result, infer_elapse = rapid_ocr(img, box_thresh=box_thresh,
unclip_ratio=unclip_ratio,
text_score=text_score)
det_cost, cls_cost, rec_cost = infer_elapse
out_log_list.extend([f'det cost: {det_cost:.5f}',
f'cls cost: {cls_cost:.5f}',
f'rec cost: {rec_cost:.5f}'])
out_log = '\n'.join([str(v) for v in out_log_list])
if not ocr_result:
return img_path, '未识别到有效文本', out_log
dt_boxes, rec_res, scores = list(zip(*ocr_result))
font_path = Path('fonts') / font_dict.get(lan_name)
img_save_path = visualize(img_path, dt_boxes, rec_res, scores,
font_path=str(font_path))
output_text = [f'{one_rec} {float(score):.4f}'
for one_rec, score in zip(rec_res, scores)]
return img_save_path, output_text, out_log
if __name__ == '__main__':
examples = [['images/1.jpg'],
['images/ch_en_num.jpg'],
['images/air_ticket.jpg'],
['images/car_plate.jpeg'],
['images/idcard.jpg'],
['images/train_ticket.jpeg'],
['images/japan_2.jpg'],
['images/korean_1.jpg']]
with gr.Blocks(title='RapidOCR') as demo:
gr.Markdown("""
<h1><center><a href="https://github.com/RapidAI/RapidOCR" target="_blank">Rapid⚡OCR</a></center></h1>
### Docs: [Docs](https://rapidocr.rtfd.io/)
### 运行环境:
Python: 3.8 | onnxruntime: 1.14.1 | rapidocr_onnxruntime: 1.2.5""")
gr.Markdown(
'''**[超参数调节](https://github.com/RapidAI/RapidOCR/tree/main/python#configyaml%E4%B8%AD%E5%B8%B8%E7%94%A8%E5%8F%82%E6%95%B0%E4%BB%8B%E7%BB%8D)**
- **box_thresh**: 检测到的框是文本的概率,值越大,框中是文本的概率就越大。存在漏检时,调低该值。取值范围:[0, 1.0]
- **unclip_ratio**: 控制文本检测框的大小,值越大,检测框整体越大。在出现框截断文字的情况,调大该值。取值范围:[1.5, 2.0]
- **text_score**: 文本识别结果是正确的置信度,值越大,显示出的识别结果更准确。存在漏检时,调低该值。取值范围:[0, 1.0]
''')
with gr.Row():
box_thresh = gr.Slider(minimum=0, maximum=1.0, value=0.5,
label='box_thresh', step=0.1,
interactive=True,
info='[0, 1.0]')
unclip_ratio = gr.Slider(minimum=1.5, maximum=2.0, value=1.6,
label='unclip_ratio', step=0.1,
interactive=True,
info='[1.5, 2.0]')
text_score = gr.Slider(minimum=0, maximum=1.0, value=0.5,
label='text_score', step=0.1,
interactive=True,
info='[0, 1.0]')
gr.Markdown('**[模型选择](https://github.com/RapidAI/RapidOCR/blob/main/docs/models.md)**')
with gr.Row():
text_det = gr.Dropdown(['ch_PP-OCRv3_det_infer.onnx',
'ch_PP-OCRv2_det_infer.onnx',
'ch_ppocr_server_v2.0_det_infer.onnx'],
label='选择文本检测模型',
value='ch_PP-OCRv3_det_infer.onnx',
interactive=True)
rec_model_list = [v.name for v in Path('models/text_rec').iterdir()]
text_rec = gr.Dropdown(rec_model_list,
label='选择文本识别模型(包括中英文和多语言)',
value='ch_PP-OCRv3_rec_infer.onnx',
interactive=True)
with gr.Row():
input_img = gr.Image(type='filepath', label='Input')
out_img = gr.Image(type='filepath', label='Output')
out_log = gr.outputs.Textbox(type='text', label='Run Log')
out_txt = gr.outputs.Textbox(type='text', label='RecText')
button = gr.Button('Submit')
button.click(fn=inference,
inputs=[input_img, box_thresh, unclip_ratio, text_score,
text_det, text_rec],
outputs=[out_img, out_txt, out_log])
gr.Examples(examples=examples,
inputs=[input_img, box_thresh, unclip_ratio, text_score,
text_det, text_rec],
outputs=[out_img, out_txt, out_log], fn=inference)
demo.launch(debug=True, enable_queue=True)
|