File size: 6,304 Bytes
5d6a0bb
 
00e3b6c
5d6a0bb
 
9792e33
00e3b6c
5d6a0bb
8d6e841
5d6a0bb
8d6e841
 
 
 
 
 
5d6a0bb
9792e33
7e03ca9
 
19a047e
 
7e03ca9
 
 
 
 
 
 
19a047e
7e03ca9
 
 
 
 
19a047e
8d6e841
 
 
 
 
 
 
 
 
19a047e
8d6e841
19a047e
 
7e03ca9
5d6a0bb
19a047e
 
 
 
 
 
 
 
0fd5b51
19a047e
0fd5b51
00e3b6c
8d6e841
 
 
00e3b6c
 
19a047e
9792e33
461c5b6
8d6e841
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# -*- encoding: utf-8 -*-
import time
from pathlib import Path

import cv2
import gradio as gr
from rapidocr_onnxruntime import RapidOCR

from utils import visualize

font_dict = {
    'ch': 'FZYTK.TTF',
    'japan': 'japan.ttc',
    'korean': 'korean.ttf',
    'en': 'FZYTK.TTF'
}


def inference(img_path, box_thresh=0.5, unclip_ratio=1.6, text_score=0.5,
              text_det=None, text_rec=None):
    out_log_list = []

    det_model_path = str(Path('models') / 'text_det' / text_det)
    rec_model_path = str(Path('models') / 'text_rec' / text_rec)
    if 'v2' in rec_model_path:
        rec_image_shape = [3, 32, 320]
    else:
        rec_image_shape = [3, 48, 320]

    out_log_list.append('Init Model')
    s = time.time()
    rapid_ocr = RapidOCR(det_model_path=det_model_path,
                         rec_model_path=rec_model_path,
                         rec_img_shape=rec_image_shape)
    elapse = time.time() - s

    if 'ch' in rec_model_path or 'en' in rec_model_path:
        lan_name = 'ch'
    elif 'japan' in rec_model_path:
        lan_name = 'japan'
    elif 'korean' in rec_model_path:
        lan_name = 'korean'
    else:
        lan_name = 'ch'

    out_log_list.append(f'Init Model cost: {elapse:.5f}')
    out_log_list.extend([f'det_model: {det_model_path}',
                         f'rec_model: {rec_model_path}',
                         f'rec_image_shape: {rec_image_shape}'])

    img = cv2.imread(img_path)
    ocr_result, infer_elapse = rapid_ocr(img, box_thresh=box_thresh,
                                         unclip_ratio=unclip_ratio,
                                         text_score=text_score)
    det_cost, cls_cost, rec_cost = infer_elapse
    out_log_list.extend([f'det cost: {det_cost:.5f}',
                         f'cls cost: {cls_cost:.5f}',
                         f'rec cost: {rec_cost:.5f}'])
    out_log = '\n'.join([str(v) for v in out_log_list])
    if not ocr_result:
        return img_path, '未识别到有效文本', out_log

    dt_boxes, rec_res, scores = list(zip(*ocr_result))
    font_path = Path('fonts') / font_dict.get(lan_name)
    img_save_path = visualize(img_path, dt_boxes, rec_res, scores,
                              font_path=str(font_path))
    output_text = [f'{one_rec} {float(score):.4f}'
                   for one_rec, score in zip(rec_res, scores)]
    return img_save_path, output_text, out_log


if __name__ == '__main__':

    examples = [['images/1.jpg'],
                ['images/ch_en_num.jpg'],
                ['images/air_ticket.jpg'],
                ['images/car_plate.jpeg'],
                ['images/idcard.jpg'],
                ['images/train_ticket.jpeg'],
                ['images/japan_2.jpg'],
                ['images/korean_1.jpg']]

    with gr.Blocks(title='RapidOCR') as demo:
        gr.Markdown("""
            <h1><center><a href="https://github.com/RapidAI/RapidOCR" target="_blank">Rapid⚡OCR</a></center></h1>

            ### Docs: [Docs](https://rapidocr.rtfd.io/)
            ### 运行环境:
            Python: 3.8 | onnxruntime: 1.14.1 | rapidocr_onnxruntime: 1.2.5""")
        gr.Markdown(
            '''**[超参数调节](https://github.com/RapidAI/RapidOCR/tree/main/python#configyaml%E4%B8%AD%E5%B8%B8%E7%94%A8%E5%8F%82%E6%95%B0%E4%BB%8B%E7%BB%8D)**
            - **box_thresh**: 检测到的框是文本的概率,值越大,框中是文本的概率就越大。存在漏检时,调低该值。取值范围:[0, 1.0]
            - **unclip_ratio**: 控制文本检测框的大小,值越大,检测框整体越大。在出现框截断文字的情况,调大该值。取值范围:[1.5, 2.0]
            - **text_score**: 文本识别结果是正确的置信度,值越大,显示出的识别结果更准确。存在漏检时,调低该值。取值范围:[0, 1.0]
            ''')
        with gr.Row():
            box_thresh = gr.Slider(minimum=0, maximum=1.0, value=0.5,
                                   label='box_thresh', step=0.1,
                                   interactive=True,
                                   info='[0, 1.0]')
            unclip_ratio = gr.Slider(minimum=1.5, maximum=2.0, value=1.6,
                                     label='unclip_ratio', step=0.1,
                                     interactive=True,
                                     info='[1.5, 2.0]')
            text_score = gr.Slider(minimum=0, maximum=1.0, value=0.5,
                                   label='text_score', step=0.1,
                                   interactive=True,
                                   info='[0, 1.0]')

        gr.Markdown('**[模型选择](https://github.com/RapidAI/RapidOCR/blob/main/docs/models.md)**')
        with gr.Row():
            text_det = gr.Dropdown(['ch_PP-OCRv3_det_infer.onnx',
                                    'ch_PP-OCRv2_det_infer.onnx',
                                    'ch_ppocr_server_v2.0_det_infer.onnx'],
                                   label='选择文本检测模型',
                                   value='ch_PP-OCRv3_det_infer.onnx',
                                   interactive=True)
            rec_model_list = [v.name for v in Path('models/text_rec').iterdir()]
            text_rec = gr.Dropdown(rec_model_list,
                                   label='选择文本识别模型(包括中英文和多语言)',
                                   value='ch_PP-OCRv3_rec_infer.onnx',
                                   interactive=True)

        with gr.Row():
            input_img = gr.Image(type='filepath', label='Input')
            out_img = gr.Image(type='filepath', label='Output')
        out_log = gr.outputs.Textbox(type='text', label='Run Log')
        out_txt = gr.outputs.Textbox(type='text', label='RecText')
        button = gr.Button('Submit')
        button.click(fn=inference,
                     inputs=[input_img, box_thresh, unclip_ratio, text_score,
                             text_det, text_rec],
                     outputs=[out_img, out_txt, out_log])
        gr.Examples(examples=examples,
                    inputs=[input_img, box_thresh, unclip_ratio, text_score,
                            text_det, text_rec],
                    outputs=[out_img, out_txt, out_log], fn=inference)
    demo.launch(debug=True, enable_queue=True)