Spaces:
Running
Running
Add log
Browse files
app.py
CHANGED
@@ -86,6 +86,8 @@ def visualize(image_path, boxes, txts, scores,
|
|
86 |
|
87 |
def inference(img_path, box_thresh=0.5, unclip_ratio=1.6, text_score=0.5,
|
88 |
text_det=None, text_rec=None):
|
|
|
|
|
89 |
det_model_path = str(Path('models') / 'text_det' / text_det)
|
90 |
rec_model_path = str(Path('models') / 'text_rec' / text_rec)
|
91 |
if 'v2' in rec_model_path:
|
@@ -93,27 +95,35 @@ def inference(img_path, box_thresh=0.5, unclip_ratio=1.6, text_score=0.5,
|
|
93 |
else:
|
94 |
rec_image_shape = [3, 48, 320]
|
95 |
|
96 |
-
|
97 |
s = time.time()
|
98 |
rapid_ocr = RapidOCR(det_model_path=det_model_path,
|
99 |
rec_model_path=rec_model_path,
|
100 |
rec_img_shape=rec_image_shape)
|
101 |
-
print(det_model_path, rec_model_path, rec_image_shape)
|
102 |
elapse = time.time() - s
|
103 |
-
|
|
|
|
|
|
|
|
|
104 |
|
105 |
img = cv2.imread(img_path)
|
106 |
-
ocr_result,
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
109 |
if not ocr_result:
|
110 |
-
return img_path, '未识别到有效文本'
|
111 |
|
112 |
dt_boxes, rec_res, scores = list(zip(*ocr_result))
|
113 |
img_save_path = visualize(img_path, dt_boxes, rec_res, scores)
|
114 |
output_text = [f'{one_rec} {float(score):.4f}'
|
115 |
for one_rec, score in zip(rec_res, scores)]
|
116 |
-
return img_save_path, output_text
|
117 |
|
118 |
|
119 |
examples = [['images/1.jpg'], ['images/ch_en_num.jpg']]
|
@@ -163,14 +173,15 @@ with gr.Blocks(title='RapidOCR') as demo:
|
|
163 |
with gr.Row():
|
164 |
input_img = gr.Image(type='filepath', label='Input')
|
165 |
out_img = gr.Image(type='filepath', label='Output')
|
|
|
166 |
out_txt = gr.outputs.Textbox(type='text', label='RecText')
|
167 |
button = gr.Button('Submit')
|
168 |
button.click(fn=inference,
|
169 |
inputs=[input_img, box_thresh, unclip_ratio, text_score,
|
170 |
text_det, text_rec],
|
171 |
-
outputs=[out_img, out_txt])
|
172 |
gr.Examples(examples=examples,
|
173 |
inputs=[input_img, box_thresh, unclip_ratio, text_score,
|
174 |
text_det, text_rec],
|
175 |
-
outputs=[out_img, out_txt], fn=inference)
|
176 |
demo.launch(debug=True, enable_queue=True)
|
|
|
86 |
|
87 |
def inference(img_path, box_thresh=0.5, unclip_ratio=1.6, text_score=0.5,
|
88 |
text_det=None, text_rec=None):
|
89 |
+
out_log_list = []
|
90 |
+
|
91 |
det_model_path = str(Path('models') / 'text_det' / text_det)
|
92 |
rec_model_path = str(Path('models') / 'text_rec' / text_rec)
|
93 |
if 'v2' in rec_model_path:
|
|
|
95 |
else:
|
96 |
rec_image_shape = [3, 48, 320]
|
97 |
|
98 |
+
out_log_list.append('Init Model')
|
99 |
s = time.time()
|
100 |
rapid_ocr = RapidOCR(det_model_path=det_model_path,
|
101 |
rec_model_path=rec_model_path,
|
102 |
rec_img_shape=rec_image_shape)
|
|
|
103 |
elapse = time.time() - s
|
104 |
+
|
105 |
+
out_log_list.append(f'Init Model cost: {elapse:.5f}')
|
106 |
+
out_log_list.extend([f'det_model:{det_model_path}',
|
107 |
+
f'rec_model: {rec_model_path}',
|
108 |
+
f'rec_image_shape: {rec_image_shape}'])
|
109 |
|
110 |
img = cv2.imread(img_path)
|
111 |
+
ocr_result, infer_elapse = rapid_ocr(img, box_thresh=box_thresh,
|
112 |
+
unclip_ratio=unclip_ratio,
|
113 |
+
text_score=text_score)
|
114 |
+
det_cost, cls_cost, rec_cost = infer_elapse
|
115 |
+
out_log_list.extend([f'det cost: {det_cost:.5f}',
|
116 |
+
f'cls cost: {cls_cost:.5f}',
|
117 |
+
f'rec cost: {rec_cost:.5f}'])
|
118 |
+
out_log = '\n'.join([str(v) for v in out_log_list])
|
119 |
if not ocr_result:
|
120 |
+
return img_path, '未识别到有效文本', out_log
|
121 |
|
122 |
dt_boxes, rec_res, scores = list(zip(*ocr_result))
|
123 |
img_save_path = visualize(img_path, dt_boxes, rec_res, scores)
|
124 |
output_text = [f'{one_rec} {float(score):.4f}'
|
125 |
for one_rec, score in zip(rec_res, scores)]
|
126 |
+
return img_save_path, output_text, out_log
|
127 |
|
128 |
|
129 |
examples = [['images/1.jpg'], ['images/ch_en_num.jpg']]
|
|
|
173 |
with gr.Row():
|
174 |
input_img = gr.Image(type='filepath', label='Input')
|
175 |
out_img = gr.Image(type='filepath', label='Output')
|
176 |
+
out_log = gr.outputs.Textbox(type='text', label='Run Log')
|
177 |
out_txt = gr.outputs.Textbox(type='text', label='RecText')
|
178 |
button = gr.Button('Submit')
|
179 |
button.click(fn=inference,
|
180 |
inputs=[input_img, box_thresh, unclip_ratio, text_score,
|
181 |
text_det, text_rec],
|
182 |
+
outputs=[out_img, out_txt, out_log])
|
183 |
gr.Examples(examples=examples,
|
184 |
inputs=[input_img, box_thresh, unclip_ratio, text_score,
|
185 |
text_det, text_rec],
|
186 |
+
outputs=[out_img, out_txt, out_log], fn=inference)
|
187 |
demo.launch(debug=True, enable_queue=True)
|