RAHULJUNEJA33's picture
Rename app.py to appbest.py
829ed9f verified
import streamlit as st
import numpy as np
from PyPDF2 import PdfReader
from PIL import Image
import pytesseract
import openai
from transformers import pipeline
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain.llms import OpenAI
import faiss
# Retrieve the OpenAI API Key from the secrets
openai_api_key = st.secrets["OPENAI_API_KEY"]
client = OpenAI(api_key=openai_api_key)
# Configuration
pytesseract.pytesseract.tesseract_cmd = '/usr/bin/tesseract'
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
dim = 1536 # Embedding dimension
index = faiss.IndexFlatL2(dim)
def create_embedding(text):
"""Generate embeddings using OpenAI"""
try:
response = openai.Embedding.create(
model="text-embedding-ada-002",
input=text,
api_key=openai_api_key
)
return response['data'][0]['embedding']
except Exception as e:
st.error(f"Error creating embedding: {str(e)}")
return None
def extract_text(uploaded_file):
"""Extract text from PDF, TXT, or image files"""
text = ""
try:
if uploaded_file.type == "application/pdf":
reader = PdfReader(uploaded_file)
for page in reader.pages:
if page.extract_text():
text += page.extract_text() + "\n"
elif uploaded_file.type == "text/plain":
text = uploaded_file.read().decode("utf-8")
elif uploaded_file.type.startswith('image'):
image = Image.open(uploaded_file)
text = pytesseract.image_to_string(image)
except Exception as e:
st.error(f"Text extraction failed: {str(e)}")
return text.strip()
def chunk_text(text, max_tokens=1000):
"""Splits text into smaller chunks within token limits"""
words = text.split()
chunks = []
current_chunk = []
count = 0
for word in words:
current_chunk.append(word)
count += len(word.split())
if count >= max_tokens:
chunks.append(" ".join(current_chunk))
current_chunk = []
count = 0
if current_chunk:
chunks.append(" ".join(current_chunk))
return chunks
def extract_summary(text):
"""Extract high-level summary in smaller chunks"""
chunks = chunk_text(text)
summary_parts = []
prompt = """
Extract a concise summary of the following categories:
- Business Requirements
- Functional Requirements
- Use Cases
- Technical Constraints
Document:
{document_text}
"""
try:
for chunk in chunks:
llm_chain = LLMChain(
prompt=PromptTemplate(template=prompt, input_variables=["document_text"]),
llm=OpenAI(openai_api_key=openai_api_key, temperature=0.3, max_tokens=300)
)
summary_parts.append(llm_chain.run(document_text=chunk))
return "\n".join(summary_parts).strip()
except Exception as e:
st.error(f"Summary extraction failed: {str(e)}")
return ""
def extract_agile_elements(text):
"""Extract EPICs, Features, and User Stories"""
chunks = chunk_text(text)
structured_output_parts = []
prompt = """
Identify and structure these elements from the document:
## 🎯 Epic: [High-level objective]
### Feature: [Key capability]
#### User Story: As a [persona], I want to [goal], so that [reason]
Document:
{document_text}
"""
try:
for chunk in chunks:
llm_chain = LLMChain(
prompt=PromptTemplate(template=prompt, input_variables=["document_text"]),
llm=OpenAI(openai_api_key=openai_api_key, temperature=0.3, max_tokens=300)
)
structured_output_parts.append(llm_chain.run(document_text=chunk))
return "\n".join(structured_output_parts).strip()
except Exception as e:
st.error(f"Agile extraction failed: {str(e)}")
return ""
def generate_detailed_user_story(user_story):
"""Generate a detailed user story including acceptance criteria"""
prompt = """
Refine the user story into the following structure:
#### User Story: As a [persona], I want to [goal], so that [reason]
**Acceptance Criteria:**
- [List of testable criteria]
User Story:
{user_story}
"""
try:
llm_chain = LLMChain(
prompt=PromptTemplate(template=prompt, input_variables=["user_story"]),
llm=OpenAI(openai_api_key=openai_api_key, temperature=0.3, max_tokens=300)
)
return llm_chain.run(user_story=user_story)
except Exception as e:
st.error(f"Detailed user story generation failed: {str(e)}")
return ""
def main():
st.title("πŸ“‘ GenAI Functional Spec Processor")
uploaded_file = st.file_uploader("Upload a functional specification document (PDF, TXT, Image)", type=["pdf", "txt", "png", "jpg", "jpeg"])
if uploaded_file:
text = extract_text(uploaded_file)
if text:
st.text_area("Extracted Text", value=text[:1000] + "...", height=200) # Show preview only
summary = extract_summary(text)
structured_output = extract_agile_elements(text)
with st.expander("πŸ“‹ Extracted Summary", expanded=False):
st.info(summary)
st.subheader("πŸ“Œ Agile Breakdown")
st.text_area("Agile Output", value=structured_output, height=300)
user_story = st.text_area("Paste a User Story to Generate Detailed Version")
if st.button("Generate Detailed User Story"):
detailed_story = generate_detailed_user_story(user_story)
st.subheader("Detailed User Story")
st.write(detailed_story)
if __name__ == "__main__":
main()