File size: 5,927 Bytes
9c57668
8efe5a0
9c57668
 
 
8efe5a0
2bc9c3e
cb55323
 
 
8efe5a0
fb9e59a
209080f
 
 
79a32d2
5526aa8
a28d499
4b59607
5526aa8
8efe5a0
2bc9c3e
 
8efe5a0
 
 
 
 
 
e591433
8efe5a0
 
 
 
 
 
5526aa8
 
8efe5a0
5526aa8
 
 
 
 
 
 
 
 
 
 
 
 
8efe5a0
5526aa8
8efe5a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e591433
8efe5a0
 
 
 
 
 
cb55323
8efe5a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e591433
8efe5a0
 
 
 
 
 
2bc9c3e
8efe5a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e591433
8efe5a0
 
 
 
 
cb55323
8efe5a0
 
 
c04a6f5
8efe5a0
 
 
 
 
 
60ba9c9
8efe5a0
 
c04a6f5
8efe5a0
 
c04a6f5
8efe5a0
 
 
 
 
 
 
e591433
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import streamlit as st
import numpy as np
from PyPDF2 import PdfReader
from PIL import Image
import pytesseract
import openai
from transformers import pipeline
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain.llms import OpenAI
import faiss

# Retrieve the OpenAI API Key from the secrets
openai_api_key = st.secrets["OPENAI_API_KEY"]
client = OpenAI(api_key=openai_api_key)

# Configuration
pytesseract.pytesseract.tesseract_cmd = '/usr/bin/tesseract'
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")

dim = 1536  # Embedding dimension
index = faiss.IndexFlatL2(dim)

def create_embedding(text):
    """Generate embeddings using OpenAI"""
    try:
        response = openai.Embedding.create(
            model="text-embedding-ada-002",
            input=text,
            api_key=openai_api_key
        )
        return response['data'][0]['embedding']
    except Exception as e:
        st.error(f"Error creating embedding: {str(e)}")
        return None

def extract_text(uploaded_file):
    """Extract text from PDF, TXT, or image files"""
    text = ""
    try:
        if uploaded_file.type == "application/pdf":
            reader = PdfReader(uploaded_file)
            for page in reader.pages:
                if page.extract_text():
                    text += page.extract_text() + "\n"
        elif uploaded_file.type == "text/plain":
            text = uploaded_file.read().decode("utf-8")
        elif uploaded_file.type.startswith('image'):
            image = Image.open(uploaded_file)
            text = pytesseract.image_to_string(image)
    except Exception as e:
        st.error(f"Text extraction failed: {str(e)}")
    return text.strip()

def chunk_text(text, max_tokens=1000):
    """Splits text into smaller chunks within token limits"""
    words = text.split()
    chunks = []
    current_chunk = []
    count = 0
    
    for word in words:
        current_chunk.append(word)
        count += len(word.split())
        if count >= max_tokens:
            chunks.append(" ".join(current_chunk))
            current_chunk = []
            count = 0
    
    if current_chunk:
        chunks.append(" ".join(current_chunk))
    
    return chunks

def extract_summary(text):
    """Extract high-level summary in smaller chunks"""
    chunks = chunk_text(text)
    summary_parts = []
    prompt = """
    Extract a concise summary of the following categories:
    - Business Requirements
    - Functional Requirements
    - Use Cases
    - Technical Constraints
    Document:
    {document_text}
    """
    
    try:
        for chunk in chunks:
            llm_chain = LLMChain(
                prompt=PromptTemplate(template=prompt, input_variables=["document_text"]),
                llm=OpenAI(openai_api_key=openai_api_key, temperature=0.3, max_tokens=300)
            )
            summary_parts.append(llm_chain.run(document_text=chunk))
        return "\n".join(summary_parts).strip()
    except Exception as e:
        st.error(f"Summary extraction failed: {str(e)}")
        return ""

def extract_agile_elements(text):
    """Extract EPICs, Features, and User Stories"""
    chunks = chunk_text(text)
    structured_output_parts = []
    prompt = """
    Identify and structure these elements from the document:
    ## 🎯 Epic: [High-level objective]
    ### Feature: [Key capability]
    #### User Story: As a [persona], I want to [goal], so that [reason]
    
    Document:
    {document_text}
    """
    try:
        for chunk in chunks:
            llm_chain = LLMChain(
                prompt=PromptTemplate(template=prompt, input_variables=["document_text"]),
                llm=OpenAI(openai_api_key=openai_api_key, temperature=0.3, max_tokens=300)
            )
            structured_output_parts.append(llm_chain.run(document_text=chunk))
        return "\n".join(structured_output_parts).strip()
    except Exception as e:
        st.error(f"Agile extraction failed: {str(e)}")
        return ""

def generate_detailed_user_story(user_story):
    """Generate a detailed user story including acceptance criteria"""
    prompt = """
    Refine the user story into the following structure:
    
    #### User Story: As a [persona], I want to [goal], so that [reason]
    
    **Acceptance Criteria:**
    - [List of testable criteria]
    
    User Story:
    {user_story}
    """
    try:
        llm_chain = LLMChain(
            prompt=PromptTemplate(template=prompt, input_variables=["user_story"]),
            llm=OpenAI(openai_api_key=openai_api_key, temperature=0.3, max_tokens=300)
        )
        return llm_chain.run(user_story=user_story)
    except Exception as e:
        st.error(f"Detailed user story generation failed: {str(e)}")
        return ""

def main():
    st.title("πŸ“‘ GenAI Functional Spec Processor")
    uploaded_file = st.file_uploader("Upload a functional specification document (PDF, TXT, Image)", type=["pdf", "txt", "png", "jpg", "jpeg"])
    
    if uploaded_file:
        text = extract_text(uploaded_file)
        if text:
            st.text_area("Extracted Text", value=text[:1000] + "...", height=200)  # Show preview only
            summary = extract_summary(text)
            structured_output = extract_agile_elements(text)
            
            with st.expander("πŸ“‹ Extracted Summary", expanded=False):
                st.info(summary)
            
            st.subheader("πŸ“Œ Agile Breakdown")
            st.text_area("Agile Output", value=structured_output, height=300)
            
            user_story = st.text_area("Paste a User Story to Generate Detailed Version")
            if st.button("Generate Detailed User Story"):
                detailed_story = generate_detailed_user_story(user_story)
                st.subheader("Detailed User Story")
                st.write(detailed_story)

if __name__ == "__main__":
    main()