Spaces:
Runtime error
Runtime error
import json | |
import os | |
import re | |
import openai | |
from langchain.prompts import PromptTemplate | |
from config import TIMEOUT_STREAM, HISTORY_DIR | |
from vector_db import upload_file | |
from callback import StreamingGradioCallbackHandler | |
from queue import SimpleQueue, Empty, Queue | |
from threading import Thread | |
from utils import add_source_numbers, add_details, web_citation, get_history_names | |
from chains.custom_chain import CustomConversationalRetrievalChain | |
from langchain.chains import LLMChain | |
from chains.azure_openai import CustomAzureOpenAI | |
from config import OPENAI_API_TYPE, OPENAI_API_VERSION, OPENAI_API_KEY, OPENAI_API_BASE, API_KEY, \ | |
DEPLOYMENT_ID, MODEL_ID | |
from cosmos_db import upsert_item, read_item, delete_items, query_items | |
class OpenAIModel: | |
def __init__( | |
self, | |
llm_model_name, | |
condense_model_name, | |
prompt_template="", | |
temperature=0.0, | |
top_p=1.0, | |
n_choices=1, | |
stop=None, | |
presence_penalty=0, | |
frequency_penalty=0, | |
user=None | |
): | |
self.llm_model_name = llm_model_name | |
self.condense_model_name = condense_model_name | |
self.prompt_template = prompt_template | |
self.temperature = temperature | |
self.top_p = top_p | |
self.n_choices = n_choices | |
self.stop = stop | |
self.presence_penalty = presence_penalty | |
self.frequency_penalty = frequency_penalty | |
self.history = [] | |
self.user_identifier = user | |
def set_user_identifier(self, new_user_identifier): | |
self.user_identifier = new_user_identifier | |
def format_prompt(self, qa_prompt_template, condense_prompt_template): | |
# Prompt template langchain | |
qa_prompt = PromptTemplate(template=qa_prompt_template, input_variables=["question", "chat_history", "context"]) | |
condense_prompt = PromptTemplate(template=condense_prompt_template, | |
input_variables=["question", "chat_history"]) | |
return qa_prompt, condense_prompt | |
def memory(self, inputs, outputs, last_k=3): | |
# last_k: top k last conversation | |
if len(self.history) >= last_k: | |
self.history.pop(0) | |
self.history.extend([(inputs, outputs)]) | |
def reset_conversation(self): | |
self.history = [] | |
return [] | |
def delete_first_conversation(self): | |
if self.history: | |
self.history.pop(0) | |
def delete_last_conversation(self): | |
if len(self.history) > 0: | |
self.history.pop() | |
def save_history(self, chatbot, file_name): | |
message = upsert_item(self.user_identifier, file_name, self.history, chatbot) | |
return message | |
def load_history(self, file_name): | |
items = read_item(self.user_identifier, file_name) | |
return items['id'], items['chatbot'] | |
def delete_history(self, file_name): | |
message = delete_items(self.user_identifier, file_name) | |
return message, get_history_names(False, self.user_identifier), [] | |
def audio_response(self, audio): | |
media_file = open(audio, 'rb') | |
response = openai.Audio.transcribe( | |
api_key=API_KEY, | |
model=MODEL_ID, | |
file=media_file | |
) | |
return response["text"], None | |
def inference(self, inputs, chatbot, streaming=False, upload_files_btn=False, custom_websearch=False, | |
local_db=False, | |
**kwargs): | |
if upload_files_btn or local_db: | |
status_text = "Indexing files to vector database" | |
yield chatbot, status_text | |
vectorstore = upload_file(upload_files_btn) | |
qa_prompt, condense_prompt = self.format_prompt(**kwargs) | |
job_done = object() # signals the processing is done | |
q = SimpleQueue() | |
if streaming: | |
timeout = TIMEOUT_STREAM | |
streaming_callback = [StreamingGradioCallbackHandler(q)] | |
# Define llm model | |
llm = CustomAzureOpenAI(deployment_name=DEPLOYMENT_ID, | |
openai_api_type=OPENAI_API_TYPE, | |
openai_api_base=OPENAI_API_BASE, | |
openai_api_version=OPENAI_API_VERSION, | |
openai_api_key=OPENAI_API_KEY, | |
temperature=self.temperature, | |
model_kwargs={"top_p": self.top_p}, | |
streaming=streaming, \ | |
callbacks=streaming_callback, | |
request_timeout=timeout) | |
condense_llm = CustomAzureOpenAI(deployment_name=self.condense_model_name, | |
openai_api_type=OPENAI_API_TYPE, | |
openai_api_base=OPENAI_API_BASE, | |
openai_api_version=OPENAI_API_VERSION, | |
openai_api_key=OPENAI_API_KEY, | |
temperature=self.temperature) | |
status_text = "Request URL: " + OPENAI_API_BASE | |
yield chatbot, status_text | |
# Create a function to call - this will run in a thread | |
# Create a Queue object | |
response_queue = SimpleQueue() | |
def task(): | |
# Conversation + RetrivalChain | |
qa = CustomConversationalRetrievalChain.from_llm(llm, vectorstore.as_retriever( | |
search_type="similarity_score_threshold", search_kwargs={"score_threshold": 0.75}), | |
condense_question_llm=condense_llm, verbose=True, | |
condense_question_prompt=condense_prompt, | |
combine_docs_chain_kwargs={"prompt": qa_prompt}, | |
return_source_documents=True) | |
# query with input and chat history | |
response = qa({"question": inputs, "chat_history": self.history}) | |
response_queue.put(response) | |
q.put(job_done) | |
thread = Thread(target=task) | |
thread.start() | |
chatbot.append((inputs, "")) | |
content = "" | |
while True: | |
try: | |
next_token = q.get(block=True) | |
if next_token is job_done: | |
break | |
content += next_token | |
chatbot[-1] = (chatbot[-1][0], content) | |
yield chatbot, status_text | |
except Empty: | |
continue | |
# add citation info to response | |
response = response_queue.get() | |
relevant_docs = response["source_documents"] | |
if len(relevant_docs) == 0: | |
display_append = "" | |
else: | |
if upload_files_btn: | |
reference_results = [d.page_content for d in relevant_docs] | |
reference_sources = [d.metadata["source"] for d in relevant_docs] | |
display_append = add_details(reference_results, reference_sources) | |
display_append = '<div class = "source-a">' + "\n".join(display_append) + '</div>' | |
else: | |
display_append = [] | |
for idx, d in enumerate(relevant_docs): | |
link = d.metadata["source"] | |
title = d.page_content.split("\n")[0] | |
# Remove non word characters and blank space before title | |
title = re.sub(r"[^\w\s]", "", title[:4]).strip() | |
display_append.append( | |
f'<a href=\"{link}\" target=\"_blank\">[{idx + 1}] {title}</a>' | |
) | |
display_append = '<div class = "source-a">' + "\n".join(display_append) + '</div>' | |
chatbot[-1] = (chatbot[-1][0], content + display_append) | |
yield chatbot, status_text | |
self.memory(inputs, content) | |
# self.auto_save_history(chatbot) | |
thread.join() | |
else: | |
import requests | |
from langchain.utilities.google_search import GoogleSearchAPIWrapper | |
from chains.web_search import GoogleWebSearch | |
from config import GOOGLE_API_KEY, GOOGLE_CSE_ID | |
top_k = 4 | |
if custom_websearch: | |
status_text = "Retrieving information from website FPTSoftware.com" | |
yield chatbot, status_text | |
params = { | |
"q": inputs, | |
"v": "\{539C9DC1-663A-418D-82A4-662D34EE34BC\}", | |
"p": 10, | |
"l": "en", | |
"s": "{EACE8DB5-668F-4357-9782-405070D28D11}", | |
"itemid": "\{91F4101E-B1F3-4905-A832-96F703D3FBB1\}", | |
} | |
req = requests.get( | |
"https://fptsoftware.com//sxa/search/results/?", | |
params=params | |
) | |
res = json.loads(req.text) | |
results = [] | |
for r in res["Results"][:top_k]: | |
link = "https://fptsoftware.com" + r["Url"] | |
results.append({"link": link}) | |
reference_results, display_append = web_citation(inputs, results, True) | |
reference_results = add_source_numbers(reference_results) | |
display_append = '<div class = "source-a">' + "\n".join(display_append) + '</div>' | |
status_text = "Request URL: " + OPENAI_API_BASE | |
yield chatbot, status_text | |
chatbot.append((inputs, "")) | |
web_search = GoogleWebSearch() | |
ai_response = web_search.predict(context="\n\n".join(reference_results), question=inputs, | |
chat_history=self.history) | |
chatbot[-1] = (chatbot[-1][0], ai_response + display_append) | |
self.memory(inputs, ai_response) | |
# self.auto_save_history(chatbot) | |
yield chatbot, status_text | |
else: | |
from chains.decision_maker import DecisionMaker | |
from chains.simple_chain import SimpleChain | |
decision_maker = DecisionMaker() | |
simple_chain = SimpleChain() | |
decision = decision_maker.predict(question=inputs) | |
if "LLM Model" in decision: | |
status_text = "Request URL: " + OPENAI_API_BASE | |
yield chatbot, status_text | |
chatbot.append((inputs, "")) | |
ai_response = simple_chain.predict(question=inputs) | |
chatbot[-1] = (chatbot[-1][0], ai_response) | |
self.memory(inputs, ai_response) | |
# self.auto_save_history(chatbot) | |
yield chatbot, status_text | |
else: | |
status_text = "Retrieving information from Google" | |
yield chatbot, status_text | |
search = GoogleSearchAPIWrapper(google_api_key=GOOGLE_API_KEY, google_cse_id=GOOGLE_CSE_ID) | |
results = search.results(inputs, num_results=top_k) | |
reference_results, display_append = web_citation(inputs, results, False) | |
reference_results = add_source_numbers(reference_results) | |
display_append = '<div class = "source-a">' + "\n".join(display_append) + '</div>' | |
status_text = "Request URL: " + OPENAI_API_BASE | |
yield chatbot, status_text | |
chatbot.append((inputs, "")) | |
web_search = GoogleWebSearch() | |
ai_response = web_search.predict(context="\n\n".join(reference_results), question=inputs, | |
chat_history=self.history) | |
chatbot[-1] = (chatbot[-1][0], ai_response + display_append) | |
self.memory(inputs, ai_response) | |
# self.auto_save_history(chatbot) | |
yield chatbot, status_text | |
if __name__ == '__main__': | |
import os | |
from config import OPENAI_API_KEY | |
from langchain.chains.llm import LLMChain | |
from langchain.prompts.chat import ( | |
ChatPromptTemplate, | |
SystemMessagePromptTemplate, | |
HumanMessagePromptTemplate) | |
SYSTEM_PROMPT_TEMPLATE = "You're a helpful assistant." | |
HUMAN_PROMPT_TEMPLATE = "Human: {question}\n AI answer:" | |
prompt = ChatPromptTemplate.from_messages( | |
[ | |
SystemMessagePromptTemplate.from_template(SYSTEM_PROMPT_TEMPLATE), | |
HumanMessagePromptTemplate.from_template(HUMAN_PROMPT_TEMPLATE) | |
] | |
) | |
llm = CustomAzureOpenAI(deployment_name="binh-gpt", | |
openai_api_key=OPENAI_API_KEY, | |
openai_api_base=OPENAI_API_BASE, | |
openai_api_version=OPENAI_API_VERSION, | |
temperature=0, | |
model_kwargs={"top_p": 1.0}, ) | |
llm_chain = LLMChain( | |
llm=llm, | |
prompt=prompt | |
) | |
results = llm_chain.predict(question="Hello") | |
print(results) |