Spaces:
Runtime error
Runtime error
File size: 11,813 Bytes
d037cdf 8c5ce8c d037cdf 8c5ce8c d037cdf 8c5ce8c d037cdf 8c5ce8c d037cdf 8c5ce8c d037cdf 8c5ce8c d037cdf 8c5ce8c d037cdf 8c5ce8c d037cdf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import json
import os
import openai
from langchain.prompts import PromptTemplate
from config import TIMEOUT_STREAM
from vector_db import upload_file
from callback import StreamingGradioCallbackHandler
from queue import SimpleQueue, Empty
from threading import Thread
from utils import history_file_path, load_lasted_file_username, add_source_numbers, add_details
from chains.custom_chain import CustomConversationalRetrievalChain
from langchain.chains import LLMChain
from chains.azure_openai import CustomAzureOpenAI
from config import OPENAI_API_TYPE, OPENAI_API_VERSION, OPENAI_API_KEY, OPENAI_API_BASE, API_KEY, \
DEPLOYMENT_ID, MODEL_ID, EMBEDDING_API_KEY, EMBEDDING_API_BASE
class OpenAIModel:
def __init__(
self,
llm_model_name,
condense_model_name,
prompt_template="",
temperature=0.0,
top_p=1.0,
n_choices=1,
stop = None,
presence_penalty=0,
frequency_penalty=0,
user = None
):
self.llm_model_name = llm_model_name
self.condense_model_name = condense_model_name
self.prompt_template = prompt_template
self.temperature = temperature
self.top_p = top_p
self.n_choices = n_choices
self.stop = stop
self.presence_penalty = presence_penalty
self.frequency_penalty = frequency_penalty
self.history = []
self.user_identifier = user
def set_user_indentifier(self, new_user_indentifier):
self.user_identifier = new_user_indentifier
def format_prompt(self, qa_prompt_template, condense_prompt_template):
# Prompt template langchain
qa_prompt = PromptTemplate(template=qa_prompt_template, input_variables=["question", "chat_history", "context"])
condense_prompt = PromptTemplate(template=condense_prompt_template, input_variables=["question", "chat_history"])
return qa_prompt, condense_prompt
def memory(self, inputs, outputs, last_k=3):
# last_k: top k last conversation
if len(self.history) >= last_k:
self.history.pop(0)
self.history.extend([(inputs, outputs)])
def reset_conversation(self):
self.history = []
return []
def delete_first_conversation(self):
if self.history:
self.history.pop(0)
def delete_last_conversation(self):
if len(self.history) > 0:
self.history.pop()
def auto_save_history(self, chatbot):
if self.user_identifier is not None:
file_path = history_file_path(self.user_identifier)
json_s = {"history": self.history, "chatbot": chatbot}
with open(file_path, "w", encoding='utf-8') as f:
json.dump(json_s, f, ensure_ascii=False)
def load_history(self):
lasted_file = load_lasted_file_username(self.user_identifier)
if lasted_file is not None:
with open(f"{lasted_file}.json", "r", encoding="utf-8") as f:
json_s = json.load(f)
self.history = json_s["history"]
chatbot = json_s["chatbot"]
return chatbot
def audio_response(self, audio):
media_file = open(audio, 'rb')
response = openai.Audio.transcribe(
api_key=API_KEY,
model=MODEL_ID,
file=media_file
)
return response["text"]
def inference(self, inputs, chatbot, streaming=False, use_websearch=False, custom_websearch=False, **kwargs):
if use_websearch or custom_websearch:
import requests
from bs4 import BeautifulSoup
from langchain.utilities.google_search import GoogleSearchAPIWrapper
from chains.web_search import GoogleWebSearch
from config import GOOGLE_API_KEY, GOOGLE_CSE_ID, CUSTOM_API_KEY, CUSTOM_CSE_ID
from chains.summary import WebSummary
from chains.multi_queries import MultiQueries
status_text = "Retrieving information from the web"
yield chatbot, status_text
if use_websearch:
google_api_key = GOOGLE_API_KEY
google_cse_id = GOOGLE_CSE_ID
else:
google_api_key = CUSTOM_API_KEY
google_cse_id = CUSTOM_CSE_ID
search = GoogleSearchAPIWrapper(google_api_key=google_api_key, google_cse_id=google_cse_id)
queries_chain = MultiQueries()
out = queries_chain.predict(question=inputs)
queries = list(map(lambda x: x.split(': ')[-1], out.split('\n\n')))
print(queries)
results = []
for query in queries:
search_rs = search.results(query, 2)
results.extend(search_rs)
reference_results = []
display_append = []
for idx, result in enumerate(results):
try:
head = requests.head(result['link'])
if "text/html" in head.headers['Content-Type']:
html_response = requests.get(result['link'])
soup = BeautifulSoup(html_response.content, "html.parser")
try:
web_summary = WebSummary()
summary = web_summary.predict(question=inputs, doc=soup.get_text())
print("Can access", result['link'])
except:
print("Cannot access ", result['link'])
summary = result['snippet']
reference_results.append([summary, result['link']])
display_append.append(
f"<a href=\"{result['link']}\" target=\"_blank\">{idx+1}. {result['title']}</a>"
)
except:
continue
reference_results = add_source_numbers(reference_results)
display_append = '<div class = "source-a">' + "\n".join(display_append) + '</div>'
status_text = "Request URL: " + OPENAI_API_BASE
yield chatbot, status_text
chatbot.append((inputs, ""))
web_search = GoogleWebSearch()
ai_response = web_search.predict(context="\n\n".join(reference_results), question=inputs, chat_history=self.history)
chatbot[-1] = (chatbot[-1][0], ai_response+display_append)
self.memory(inputs, ai_response)
self.auto_save_history(chatbot)
yield chatbot, status_text
else:
status_text = "Indexing files to vector database"
yield chatbot, status_text
vectorstore = upload_file()
status_text = "OpenAI version: " + OPENAI_API_VERSION
yield chatbot, status_text
qa_prompt, condense_prompt = self.format_prompt(**kwargs)
job_done = object() # signals the processing is done
q = SimpleQueue()
if streaming:
timeout = TIMEOUT_STREAM
streaming_callback =[StreamingGradioCallbackHandler(q)]
# Define llm model
llm = CustomAzureOpenAI(deployment_name=DEPLOYMENT_ID,
openai_api_type=OPENAI_API_TYPE,
openai_api_base=OPENAI_API_BASE,
openai_api_version=OPENAI_API_VERSION,
openai_api_key=OPENAI_API_KEY,
temperature=self.temperature,
model_kwargs={"top_p": self.top_p},
streaming=streaming,\
callbacks=streaming_callback,
request_timeout=timeout)
condense_llm = CustomAzureOpenAI(deployment_name=self.condense_model_name,
openai_api_type=OPENAI_API_TYPE,
openai_api_base=OPENAI_API_BASE,
openai_api_version=OPENAI_API_VERSION,
openai_api_key=OPENAI_API_KEY,
temperature=self.temperature)
status_text = "Request URL: " + OPENAI_API_BASE
yield chatbot, status_text
# Create a funciton to call - this will run in a thread
# Create a Queue object
response_queue = SimpleQueue()
def task():
# Converation + RetrivalChain
qa = CustomConversationalRetrievalChain.from_llm(llm, vectorstore.as_retriever(k=5),
condense_question_llm = condense_llm, verbose=True,
condense_question_prompt=condense_prompt,
combine_docs_chain_kwargs={"prompt": qa_prompt},
return_source_documents=True)
# query with input and chat history
response = qa({"question": inputs, "chat_history": self.history})
# Put response in the queue
response_queue.put(response)
q.put(job_done)
thread = Thread(target=task)
thread.start()
chatbot.append((inputs, ""))
content = ""
while True:
try:
next_token = q.get(block=True)
if next_token is job_done:
break
content += next_token
chatbot[-1] = (chatbot[-1][0], content)
yield chatbot, status_text
except Empty:
continue
# add citation info to response
# Get the response from the queue
response = response_queue.get()
relevant_docs = response["source_documents"]
reference_results = [d.page_content for d in relevant_docs]
display_append = add_details(reference_results)
display_append = "\n\n" + "<details><summary><b>Citation</b></summary>"+ "".join(display_append) + "</details>"
chatbot[-1] = (chatbot[-1][0], content+display_append)
yield chatbot, status_text
self.memory(inputs, content)
self.auto_save_history(chatbot)
thread.join()
if __name__ == '__main__':
import os
from config import OPENAI_API_KEY
from langchain.chains.llm import LLMChain
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate)
SYSTEM_PROMPT_TEMPLATE = "You're a helpfull assistant."
HUMAN_PROMPT_TEMPLATE = "Human: {question}\n AI answer:"
prompt = ChatPromptTemplate.from_messages(
[
SystemMessagePromptTemplate.from_template(SYSTEM_PROMPT_TEMPLATE),
HumanMessagePromptTemplate.from_template(HUMAN_PROMPT_TEMPLATE)
]
)
print("-===============")
llm = CustomAzureOpenAI(deployment_name="binh-gpt",
openai_api_key=OPENAI_API_KEY,
openai_api_base=OPENAI_API_BASE,
openai_api_version=OPENAI_API_VERSION,
temperature=0,
model_kwargs={"top_p": 1.0},)
llm_chain = LLMChain(
llm=llm,
prompt=prompt
)
results = llm_chain.predict(question="Hello")
print(results) |