File size: 11,813 Bytes
d037cdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c5ce8c
 
d037cdf
 
 
 
 
 
 
 
 
8c5ce8c
 
 
 
 
 
 
 
 
d037cdf
 
 
 
8c5ce8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d037cdf
8c5ce8c
 
d037cdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c5ce8c
 
 
d037cdf
 
 
 
 
 
 
 
 
8c5ce8c
 
d037cdf
8c5ce8c
 
d037cdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c5ce8c
 
d037cdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import json
import os
import openai

from langchain.prompts import PromptTemplate
from config import TIMEOUT_STREAM
from vector_db import upload_file
from callback import StreamingGradioCallbackHandler
from queue import SimpleQueue, Empty
from threading import Thread
from utils import history_file_path, load_lasted_file_username, add_source_numbers, add_details
from chains.custom_chain import CustomConversationalRetrievalChain
from langchain.chains import LLMChain
from chains.azure_openai import CustomAzureOpenAI
from config import OPENAI_API_TYPE, OPENAI_API_VERSION, OPENAI_API_KEY, OPENAI_API_BASE, API_KEY, \
                DEPLOYMENT_ID, MODEL_ID, EMBEDDING_API_KEY, EMBEDDING_API_BASE


class OpenAIModel:
    def __init__(
        self,
        llm_model_name,
        condense_model_name,
        prompt_template="",
        temperature=0.0,
        top_p=1.0,
        n_choices=1,
        stop = None,
        presence_penalty=0,
        frequency_penalty=0,
        user = None
    ):
        self.llm_model_name = llm_model_name
        self.condense_model_name = condense_model_name
        self.prompt_template = prompt_template
        self.temperature = temperature
        self.top_p = top_p
        self.n_choices = n_choices
        self.stop = stop
        self.presence_penalty = presence_penalty
        self.frequency_penalty = frequency_penalty

        self.history = []
        self.user_identifier = user

    def set_user_indentifier(self, new_user_indentifier):
        self.user_identifier = new_user_indentifier

    def format_prompt(self, qa_prompt_template, condense_prompt_template):
        # Prompt template langchain
        qa_prompt = PromptTemplate(template=qa_prompt_template, input_variables=["question", "chat_history", "context"])
        condense_prompt = PromptTemplate(template=condense_prompt_template, input_variables=["question", "chat_history"])
        return qa_prompt, condense_prompt

    def memory(self, inputs, outputs, last_k=3):
        # last_k: top k last conversation
        if len(self.history) >= last_k:
            self.history.pop(0)
        self.history.extend([(inputs, outputs)])

    def reset_conversation(self):
        self.history = []
        return []

    def delete_first_conversation(self):
        if self.history:
            self.history.pop(0)
        
    def delete_last_conversation(self):
        if len(self.history) > 0:
            self.history.pop()
        
    def auto_save_history(self, chatbot):
        if self.user_identifier is not None:
            file_path = history_file_path(self.user_identifier)
            json_s = {"history": self.history, "chatbot": chatbot}
            with open(file_path, "w", encoding='utf-8') as f:
                json.dump(json_s, f, ensure_ascii=False)
    
    def load_history(self):
        lasted_file = load_lasted_file_username(self.user_identifier)
        if lasted_file is not None:
            with open(f"{lasted_file}.json", "r", encoding="utf-8") as f:
                json_s = json.load(f)
            self.history = json_s["history"]
            chatbot = json_s["chatbot"]
            return chatbot

    def audio_response(self, audio):
        media_file = open(audio, 'rb')
        response = openai.Audio.transcribe(
                    api_key=API_KEY,
                    model=MODEL_ID,
                    file=media_file
                )
        return response["text"]

    def inference(self, inputs, chatbot, streaming=False, use_websearch=False, custom_websearch=False, **kwargs):
        if use_websearch or custom_websearch:
            import requests

            from bs4 import BeautifulSoup
            from langchain.utilities.google_search import GoogleSearchAPIWrapper
            from chains.web_search import GoogleWebSearch
            from config import GOOGLE_API_KEY, GOOGLE_CSE_ID, CUSTOM_API_KEY, CUSTOM_CSE_ID
            from chains.summary import WebSummary
            from chains.multi_queries import MultiQueries
            
            status_text = "Retrieving information from the web"
            yield chatbot, status_text
            if use_websearch:
                google_api_key = GOOGLE_API_KEY
                google_cse_id = GOOGLE_CSE_ID
            else:
                google_api_key = CUSTOM_API_KEY
                google_cse_id = CUSTOM_CSE_ID
            search = GoogleSearchAPIWrapper(google_api_key=google_api_key, google_cse_id=google_cse_id)

            queries_chain = MultiQueries()
            out = queries_chain.predict(question=inputs)
            queries = list(map(lambda x: x.split(': ')[-1], out.split('\n\n')))
            print(queries)
            results = []
            for query in queries:
                search_rs = search.results(query, 2)
                results.extend(search_rs)
            reference_results = []
            display_append = []
            for idx, result in enumerate(results):
                try:
                    head = requests.head(result['link'])
                    if "text/html" in head.headers['Content-Type']:
                        html_response = requests.get(result['link'])
                        soup = BeautifulSoup(html_response.content, "html.parser")
                        try:
                            web_summary = WebSummary()
                            summary = web_summary.predict(question=inputs, doc=soup.get_text())
                            print("Can access", result['link'])
                        except:
                            print("Cannot access ", result['link'])
                            summary = result['snippet']
                        reference_results.append([summary, result['link']])
                        display_append.append(
                            f"<a href=\"{result['link']}\" target=\"_blank\">{idx+1}.&nbsp;{result['title']}</a>"
                        )
                except:
                    continue

            reference_results = add_source_numbers(reference_results)
            display_append = '<div class = "source-a">' + "\n".join(display_append) + '</div>'

            status_text = "Request URL: " + OPENAI_API_BASE
            yield chatbot, status_text
            chatbot.append((inputs, ""))
            web_search = GoogleWebSearch()
            ai_response = web_search.predict(context="\n\n".join(reference_results), question=inputs, chat_history=self.history)
            
            chatbot[-1] = (chatbot[-1][0], ai_response+display_append)
            self.memory(inputs, ai_response)
            self.auto_save_history(chatbot)
            yield chatbot, status_text
        
        else:
            status_text = "Indexing files to vector database"
            yield chatbot, status_text

            vectorstore = upload_file()

            status_text = "OpenAI version: " + OPENAI_API_VERSION
            yield chatbot, status_text
            qa_prompt, condense_prompt = self.format_prompt(**kwargs)
            job_done = object()  # signals the processing is done
            q = SimpleQueue()
            if streaming:
                timeout = TIMEOUT_STREAM
                streaming_callback =[StreamingGradioCallbackHandler(q)]

            # Define llm model
            llm = CustomAzureOpenAI(deployment_name=DEPLOYMENT_ID, 
                                    openai_api_type=OPENAI_API_TYPE,
                                    openai_api_base=OPENAI_API_BASE,
                                    openai_api_version=OPENAI_API_VERSION,
                                    openai_api_key=OPENAI_API_KEY,
                                    temperature=self.temperature,
                                    model_kwargs={"top_p": self.top_p}, 
                                    streaming=streaming,\
                                    callbacks=streaming_callback, 
                                    request_timeout=timeout)
            
            condense_llm = CustomAzureOpenAI(deployment_name=self.condense_model_name, 
                                            openai_api_type=OPENAI_API_TYPE,
                                            openai_api_base=OPENAI_API_BASE,
                                            openai_api_version=OPENAI_API_VERSION,
                                            openai_api_key=OPENAI_API_KEY,
                                            temperature=self.temperature)

            status_text = "Request URL: " + OPENAI_API_BASE
            yield chatbot, status_text
            # Create a funciton to call - this will run in a thread

            # Create a Queue object
            response_queue = SimpleQueue()
            def task():
                # Converation + RetrivalChain
                qa = CustomConversationalRetrievalChain.from_llm(llm, vectorstore.as_retriever(k=5),
                                                condense_question_llm = condense_llm, verbose=True, 
                                                condense_question_prompt=condense_prompt,
                                                combine_docs_chain_kwargs={"prompt": qa_prompt},
                                                return_source_documents=True)
                # query with input and chat history
                response = qa({"question": inputs, "chat_history": self.history})
                # Put response in the queue
                response_queue.put(response)
                q.put(job_done)
            
            
            thread = Thread(target=task)
            thread.start()   
            chatbot.append((inputs, ""))
            content = ""
            while True:
                try:
                    next_token = q.get(block=True)
                    if next_token is job_done:
                        break
                    content += next_token
                    chatbot[-1] = (chatbot[-1][0], content)
                    yield chatbot, status_text
                except Empty:
                    continue
            
            # add citation info to response
            # Get the response from the queue
            response = response_queue.get()
            relevant_docs = response["source_documents"]
            reference_results = [d.page_content for d in relevant_docs]
            display_append = add_details(reference_results)
            display_append = "\n\n" + "<details><summary><b>Citation</b></summary>"+ "".join(display_append) + "</details>"
            chatbot[-1] = (chatbot[-1][0], content+display_append)
            yield chatbot, status_text

            self.memory(inputs, content)
            self.auto_save_history(chatbot)
            thread.join()

if __name__ == '__main__':
    import os
    from config import OPENAI_API_KEY
    from langchain.chains.llm import LLMChain
    from langchain.prompts.chat import (
        ChatPromptTemplate,
        SystemMessagePromptTemplate,
        HumanMessagePromptTemplate)
    SYSTEM_PROMPT_TEMPLATE = "You're a helpfull assistant."
    HUMAN_PROMPT_TEMPLATE = "Human: {question}\n AI answer:"
    prompt = ChatPromptTemplate.from_messages(
        [
            SystemMessagePromptTemplate.from_template(SYSTEM_PROMPT_TEMPLATE),
            HumanMessagePromptTemplate.from_template(HUMAN_PROMPT_TEMPLATE)
        ]
    )
    print("-===============")
    llm = CustomAzureOpenAI(deployment_name="binh-gpt", 
                            openai_api_key=OPENAI_API_KEY,
                            openai_api_base=OPENAI_API_BASE,
                            openai_api_version=OPENAI_API_VERSION,
                            temperature=0,
                            model_kwargs={"top_p": 1.0},)
    llm_chain = LLMChain(
        llm=llm,
        prompt=prompt
    )
    results = llm_chain.predict(question="Hello")
    print(results)