Prathamesh1420's picture
Update app.py
b7723b1 verified
'''
###
import os
import gradio as gr
import requests
from pinecone import Pinecone
from langchain.prompts import PromptTemplate
from langchain.chains.llm import LLMChain
from langchain.llms.base import LLM
from typing import Optional, List, Mapping, Any
from langchain.embeddings import HuggingFaceEmbeddings
# ----------- 1. Custom LLM to call your LitServe endpoint -----------
class LitServeLLM(LLM):
endpoint_url: str
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
payload = {"prompt": prompt}
response = requests.post(self.endpoint_url, json=payload)
if response.status_code == 200:
data = response.json()
return data.get("response", "").strip()
else:
raise ValueError(f"Request failed: {response.status_code} {response.text}")
@property
def _identifying_params(self) -> Mapping[str, Any]:
return {"endpoint_url": self.endpoint_url}
@property
def _llm_type(self) -> str:
return "litserve_llm"
# ----------- 2. Connect to Pinecone -----------
PINECONE_API_KEY = os.environ.get("PINECONE_API_KEY")
pc = Pinecone(api_key=PINECONE_API_KEY)
index = pc.Index("rag-granite-index")
# ----------- 3. Load embedding model -----------
embeddings_model = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
# ----------- 4. Function to get top context from Pinecone -----------
def get_retrieved_context(query: str, top_k=3):
query_embedding = embeddings_model.embed_query(query)
results = index.query(
namespace="rag-ns",
vector=query_embedding,
top_k=top_k,
include_metadata=True
)
context_parts = [match['metadata']['text'] for match in results['matches']]
return "\n".join(context_parts)
# ----------- 5. Create LLMChain with your model -----------
model = LitServeLLM(
endpoint_url="https://8001-01k2h9d9mervcmgfn66ybkpwvq.cloudspaces.litng.ai/predict"
)
prompt = PromptTemplate(
input_variables=["context", "question"],
template="""
You are a smart assistant. Based on the provided context, answer the question in 1–2 lines only.
If the context has more details, summarize it concisely.
Context:
{context}
Question: {question}
Answer:
"""
)
llm_chain = LLMChain(llm=model, prompt=prompt)
# ----------- 6. Main RAG Function -----------
def rag_pipeline(question):
try:
retrieved_context = get_retrieved_context(question)
response = llm_chain.invoke({
"context": retrieved_context,
"question": question
})["text"].strip()
# Only keep what's after "Answer:"
if "Answer:" in response:
response = response.split("Answer:", 1)[-1].strip()
return response
except Exception as e:
return f"Error: {str(e)}"
# ----------- 7. Gradio UI -----------
with gr.Blocks() as demo:
gr.Markdown("# 🧠 RAG Chatbot (Pinecone + LitServe)")
question_input = gr.Textbox(label="Ask your question here")
answer_output = gr.Textbox(label="Answer")
ask_button = gr.Button("Get Answer")
ask_button.click(rag_pipeline, inputs=question_input, outputs=answer_output)
if _name_ == "_main_":
demo.launch()
'''
'''
import os
import gradio as gr
import requests
import mlflow
import dagshub
from pinecone import Pinecone
from langchain.prompts import PromptTemplate
from langchain.chains.llm import LLMChain
from langchain.llms.base import LLM
from typing import Optional, List, Mapping, Any
import time
from langchain_community.embeddings import HuggingFaceEmbeddings
from dotenv import load_dotenv
from datetime import datetime
# Load environment variables
pinecone_api_key = os.environ["PINECONE_API_KEY"]
mlflow_tracking_uri = os.environ["MLFLOW_TRACKING_URI"]
# ----------- DagsHub & MLflow Setup -----------
dagshub.init(
repo_owner='prathamesh.khade20',
repo_name='Maintenance_AI_website',
mlflow=True
)
mlflow.set_tracking_uri(mlflow_tracking_uri)
mlflow.set_experiment("Maintenance-RAG-Chatbot")
mlflow.langchain.autolog()
# Initialize MLflow run for app configuration
with mlflow.start_run(run_name=f"App-Config-{datetime.now().strftime('%Y%m%d-%H%M%S')}") as setup_run:
# Log environment configuration
mlflow.log_params({
"pinecone_index": "rag-granite-index",
"embedding_model": "all-MiniLM-L6-v2",
"namespace": "rag-ns",
"top_k": 3,
"llm_endpoint": "https://8001-01k2h9d9mervcmgfn66ybkpwvq.cloudspaces.litng.ai/predict"
})
# Log important files as artifacts
mlflow.log_text("""
You are a smart assistant. Based on the provided context, answer the question in 1–2 lines only.
If the context has more details, summarize it concisely.
Context:
{context}
Question: {question}
Answer:
""", "artifacts/prompt_template.txt")
# ----------- 1. Custom LLM for LitServe endpoint -----------
class LitServeLLM(LLM):
endpoint_url: str
@mlflow.trace
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
payload = {"prompt": prompt}
with mlflow.start_span("lit_serve_request"):
start_time = time.time()
response = requests.post(self.endpoint_url, json=payload)
latency = time.time() - start_time
mlflow.log_metric("lit_serve_latency", latency)
if response.status_code == 200:
data = response.json()
mlflow.log_metric("response_tokens", len(data.get("response", "").split()))
return data.get("response", "").strip()
else:
mlflow.log_metric("request_errors", 1)
error_info = {
"status_code": response.status_code,
"error": response.text,
"timestamp": datetime.now().isoformat()
}
mlflow.log_dict(error_info, "artifacts/error_log.json")
raise ValueError(f"Request failed: {response.status_code}")
@property
def _identifying_params(self) -> Mapping[str, Any]:
return {"endpoint_url": self.endpoint_url}
@property
def _llm_type(self) -> str:
return "litserve_llm"
# ----------- 2. Pinecone Connection -----------
@mlflow.trace
def init_pinecone():
PINECONE_API_KEY = os.environ.get("PINECONE_API_KEY")
pc = Pinecone(api_key=PINECONE_API_KEY)
return pc.Index("rag-granite-index")
index = init_pinecone()
# ----------- 3. Embedding Model -----------
embeddings_model = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
# ----------- 4. Context Retrieval with Tracing -----------
@mlflow.trace
def get_retrieved_context(query: str, top_k=3):
"""Retrieve context from Pinecone with performance tracing"""
with mlflow.start_span("embedding_generation"):
start_time = time.time()
query_embedding = embeddings_model.embed_query(query)
mlflow.log_metric("embedding_latency", time.time() - start_time)
with mlflow.start_span("pinecone_query"):
start_time = time.time()
results = index.query(
namespace="rag-ns",
vector=query_embedding,
top_k=top_k,
include_metadata=True
)
mlflow.log_metric("pinecone_latency", time.time() - start_time)
mlflow.log_metric("retrieved_chunks", len(results['matches']))
context_parts = [match['metadata']['text'] for match in results['matches']]
return "\n".join(context_parts)
# ----------- 5. LLM Chain Setup -----------
model = LitServeLLM(
endpoint_url="https://8001-01k2h9d9mervcmgfn66ybkpwvq.cloudspaces.litng.ai/predict"
)
prompt = PromptTemplate(
input_variables=["context", "question"],
template="""
You are a smart assistant. Based on the provided context, answer the question in 1–2 lines only.
If the context has more details, summarize it concisely.
Context:
{context}
Question: {question}
Answer:
"""
)
llm_chain = LLMChain(llm=model, prompt=prompt)
# ----------- 6. RAG Pipeline with Full Tracing -----------
@mlflow.trace
def rag_pipeline(question):
"""End-to-end RAG pipeline with MLflow tracing"""
try:
# Start a new nested run for each query
with mlflow.start_run(run_name=f"Query-{datetime.now().strftime('%H%M%S')}", nested=True):
mlflow.log_param("user_question", question)
# Retrieve context
retrieved_context = get_retrieved_context(question)
mlflow.log_text(retrieved_context, "artifacts/retrieved_context.txt")
# Generate response
start_time = time.time()
response = llm_chain.invoke({
"context": retrieved_context,
"question": question
})["text"].strip()
# Clean response
if "Answer:" in response:
response = response.split("Answer:", 1)[-1].strip()
# Log metrics
mlflow.log_metric("response_latency", time.time() - start_time)
mlflow.log_metric("response_length", len(response))
mlflow.log_text(response, "artifacts/response.txt")
return response
except Exception as e:
mlflow.log_metric("pipeline_errors", 1)
error_info = {
"error": str(e),
"question": question,
"timestamp": datetime.now().isoformat()
}
mlflow.log_dict(error_info, "artifacts/pipeline_errors.json")
return f"Error: {str(e)}"
# ----------- 7. Gradio UI with Enhanced Tracking -----------
with gr.Blocks() as demo:
gr.Markdown("# 🛠 Maintenance AI Assistant")
# Track additional UI metrics
usage_counter = gr.State(value=0)
session_start = gr.State(value=datetime.now().isoformat())
question_input = gr.Textbox(label="Ask your maintenance question")
answer_output = gr.Textbox(label="AI Response")
ask_button = gr.Button("Get Answer")
feedback = gr.Radio(["Helpful", "Not Helpful"], label="Was this response helpful?")
def track_usage(question, count, session_start, feedback=None):
"""Wrapper to track usage metrics with feedback"""
count += 1
# Start tracking context
with mlflow.start_run(run_name=f"User-Interaction-{count}", nested=True):
mlflow.log_param("question", question)
mlflow.log_param("session_start", session_start)
# Get response
response = rag_pipeline(question)
# Log feedback if provided
if feedback:
mlflow.log_param("user_feedback", feedback)
mlflow.log_metric("helpful_responses", 1 if feedback == "Helpful" else 0)
# Update metrics
mlflow.log_metric("total_queries", count)
return response, count, session_start
ask_button.click(
track_usage,
inputs=[question_input, usage_counter, session_start],
outputs=[answer_output, usage_counter, session_start]
)
feedback.change(
track_usage,
inputs=[question_input, usage_counter, session_start, feedback],
outputs=[answer_output, usage_counter, session_start]
)
if _name_ == "_main_":
# Log deployment information
with mlflow.start_run(run_name="Deployment-Info"):
mlflow.log_params({
"app_version": "1.0.0",
"deployment_platform": "Lightning AI",
"deployment_time": datetime.now().isoformat(),
"code_version": os.getenv("GIT_COMMIT", "dev")
})
# Start Gradio app
demo.launch()
'''
import torch
import mauve
from sacrebleu import corpus_bleu
from rouge_score import rouge_scorer
from bert_score import score
from transformers import GPT2LMHeadModel, GPT2Tokenizer, pipeline, AutoTokenizer
import re
from mauve import compute_mauve
import os
import gradio as gr
import requests
import mlflow
import dagshub
from pinecone import Pinecone
from langchain.prompts import PromptTemplate
from langchain.chains.llm import LLMChain
from langchain.llms.base import LLM
from typing import Optional, List, Mapping, Any
import time
from langchain_community.embeddings import HuggingFaceEmbeddings
from dotenv import load_dotenv
from datetime import datetime
# Load environment variables
load_dotenv()
pinecone_api_key = os.environ["PINECONE_API_KEY"]
mlflow_tracking_uri = os.environ["MLFLOW_TRACKING_URI"]
# ----------- DagsHub & MLflow Setup -----------
dagshub.init(
repo_owner='prathamesh.khade20',
repo_name='Maintenance_AI_website',
mlflow=True
)
mlflow.set_tracking_uri(mlflow_tracking_uri)
mlflow.set_experiment("Maintenance-RAG-Chatbot")
mlflow.langchain.autolog()
# ----------- RAG Evaluator Class -----------
class RAGEvaluator:
def __init__(self):
self.gpt2_model, self.gpt2_tokenizer = self.load_gpt2_model()
self.bias_pipeline = pipeline("zero-shot-classification", model="Hate-speech-CNERG/dehatebert-mono-english")
# Initialize tokenizer for text processing
self.tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
def load_gpt2_model(self):
model = GPT2LMHeadModel.from_pretrained('gpt2')
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
return model, tokenizer
def evaluate_bleu_rouge(self, candidates, references):
bleu_score = corpus_bleu(candidates, [references]).score
scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)
rouge_scores = [scorer.score(ref, cand) for ref, cand in zip(references, candidates)]
rouge1 = sum([score['rouge1'].fmeasure for score in rouge_scores]) / len(rouge_scores)
rouge2 = sum([score['rouge2'].fmeasure for score in rouge_scores]) / len(rouge_scores)
rougeL = sum([score['rougeL'].fmeasure for score in rouge_scores]) / len(rouge_scores)
return bleu_score, rouge1, rouge2, rougeL
def evaluate_bert_score(self, candidates, references):
P, R, F1 = score(candidates, references, lang="en", model_type='bert-base-multilingual-cased')
return P.mean().item(), R.mean().item(), F1.mean().item()
def evaluate_perplexity(self, text):
encodings = self.gpt2_tokenizer(text, return_tensors='pt')
max_length = self.gpt2_model.config.n_positions
stride = 512
lls = []
for i in range(0, encodings.input_ids.size(1), stride):
begin_loc = max(i + stride - max_length, 0)
end_loc = min(i + stride, encodings.input_ids.size(1))
trg_len = end_loc - i
input_ids = encodings.input_ids[:, begin_loc:end_loc]
target_ids = input_ids.clone()
target_ids[:, :-trg_len] = -100
with torch.no_grad():
outputs = self.gpt2_model(input_ids, labels=target_ids)
log_likelihood = outputs[0] * trg_len
lls.append(log_likelihood)
ppl = torch.exp(torch.stack(lls).sum() / end_loc)
return ppl.item()
def evaluate_diversity(self, texts):
# Use Hugging Face tokenizer instead of NLTK
all_tokens = []
for text in texts:
tokens = self.tokenizer.tokenize(text)
all_tokens.extend(tokens)
# Create bigrams manually
unique_bigrams = set()
for i in range(len(all_tokens) - 1):
unique_bigrams.add((all_tokens[i], all_tokens[i+1]))
diversity_score = len(unique_bigrams) / len(all_tokens) if all_tokens else 0
return diversity_score
def evaluate_racial_bias(self, text):
results = self.bias_pipeline([text], candidate_labels=["hate speech", "not hate speech"])
bias_score = results[0]['scores'][results[0]['labels'].index('hate speech')]
return bias_score
def evaluate_meteor(self, candidates, references):
# Simple approximation of METEOR without NLTK
# This is a simplified version - consider using an external API for full METEOR
meteor_scores = []
for ref, cand in zip(references, candidates):
ref_tokens = self.tokenizer.tokenize(ref)
cand_tokens = self.tokenizer.tokenize(cand)
# Calculate precision and recall
common_tokens = set(ref_tokens) & set(cand_tokens)
precision = len(common_tokens) / len(cand_tokens) if cand_tokens else 0
recall = len(common_tokens) / len(ref_tokens) if ref_tokens else 0
# F-measure with alpha=0.9 (METEOR default)
if precision + recall == 0:
f_score = 0
else:
f_score = (10 * precision * recall) / (9 * precision + recall)
meteor_scores.append(f_score)
return sum(meteor_scores) / len(meteor_scores) if meteor_scores else 0
def evaluate_chrf(self, candidates, references):
# Simple character n-gram F-score approximation
chrf_scores = []
for ref, cand in zip(references, candidates):
# Character 6-grams
ref_chars = list(ref)
cand_chars = list(cand)
ref_ngrams = set()
cand_ngrams = set()
# Create character 6-grams
for i in range(len(ref_chars) - 5):
ref_ngrams.add(tuple(ref_chars[i:i+6]))
for i in range(len(cand_chars) - 5):
cand_ngrams.add(tuple(cand_chars[i:i+6]))
common_ngrams = ref_ngrams & cand_ngrams
precision = len(common_ngrams) / len(cand_ngrams) if cand_ngrams else 0
recall = len(common_ngrams) / len(ref_ngrams) if ref_ngrams else 0
if precision + recall == 0:
chrf_score = 0
else:
chrf_score = 2 * precision * recall / (precision + recall)
chrf_scores.append(chrf_score)
return sum(chrf_scores) / len(chrf_scores) if chrf_scores else 0
def evaluate_readability(self, text):
# Simple readability metrics without textstat
words = re.findall(r'\b\w+\b', text.lower())
sentences = re.split(r'[.!?]+', text)
num_words = len(words)
num_sentences = len([s for s in sentences if s.strip()])
# Average word length
avg_word_length = sum(len(word) for word in words) / num_words if num_words else 0
# Words per sentence
words_per_sentence = num_words / num_sentences if num_sentences else 0
# Simplified Flesch Reading Ease approximation
flesch_ease = 206.835 - (1.015 * words_per_sentence) - (84.6 * avg_word_length)
# Simplified Flesch-Kincaid Grade Level approximation
flesch_grade = (0.39 * words_per_sentence) + (11.8 * avg_word_length) - 15.59
return flesch_ease, flesch_grade
def evaluate_mauve(self, reference_texts, generated_texts):
out = compute_mauve(
p_text=reference_texts,
q_text=generated_texts,
device_id=0,
max_text_length=1024,
verbose=False
)
return out.mauve
def evaluate_all(self, question, response, reference):
candidates = [response]
references = [reference]
bleu, rouge1, rouge2, rougeL = self.evaluate_bleu_rouge(candidates, references)
bert_p, bert_r, bert_f1 = self.evaluate_bert_score(candidates, references)
perplexity = self.evaluate_perplexity(response)
diversity = self.evaluate_diversity(candidates)
racial_bias = self.evaluate_racial_bias(response)
meteor = self.evaluate_meteor(candidates, references)
chrf = self.evaluate_chrf(candidates, references)
flesch_ease, flesch_grade = self.evaluate_readability(response)
# Mauve requires multiple samples, so we'll handle it separately
mauve_score = self.evaluate_mauve(references, candidates) if len(references) > 1 else 0.0
return {
"BLEU": bleu,
"ROUGE-1": rouge1,
"ROUGE-2": rouge2,
"ROUGE-L": rougeL,
"BERT_Precision": bert_p,
"BERT_Recall": bert_r,
"BERT_F1": bert_f1,
"Perplexity": perplexity,
"Diversity": diversity,
"Racial_Bias": racial_bias,
"MAUVE": mauve_score,
"METEOR": meteor,
"CHRF": chrf,
"Flesch_Reading_Ease": flesch_ease,
"Flesch_Kincaid_Grade": flesch_grade,
}
# Initialize the evaluator
evaluator = RAGEvaluator()
# Initialize MLflow run for app configuration
with mlflow.start_run(run_name=f"App-Config-{datetime.now().strftime('%Y%m%d-%H%M%S')}") as setup_run:
# Log environment configuration
mlflow.log_params({
"pinecone_index": "rag-granite-index",
"embedding_model": "all-MiniLM-L6-v2",
"namespace": "rag-ns",
"top_k": 3,
"llm_endpoint": "https://8001-01k2h9d9mervcmgfn66ybkpwvq.cloudspaces.litng.ai/predict"
})
# Log prompt template
mlflow.log_text("""
You are a smart assistant. Based on the provided context, answer the question in 1–2 lines only.
If the context has more details, summarize it concisely.
Context:
{context}
Question: {question}
Answer:
""", "artifacts/prompt_template.txt")
# ----------- 1. Custom LLM for LitServe endpoint -----------
class LitServeLLM(LLM):
endpoint_url: str
@mlflow.trace
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
payload = {"prompt": prompt}
with mlflow.start_span("lit_serve_request"):
start_time = time.time()
response = requests.post(self.endpoint_url, json=payload)
latency = time.time() - start_time
mlflow.log_metric("lit_serve_latency", latency)
if response.status_code == 200:
data = response.json()
mlflow.log_metric("response_tokens", len(data.get("response", "").split()))
return data.get("response", "").strip()
else:
mlflow.log_metric("request_errors", 1)
error_info = {
"status_code": response.status_code,
"error": response.text,
"timestamp": datetime.now().isoformat()
}
mlflow.log_dict(error_info, "artifacts/error_log.json")
raise ValueError(f"Request failed: {response.status_code}")
@property
def _identifying_params(self) -> Mapping[str, Any]:
return {"endpoint_url": self.endpoint_url}
@property
def _llm_type(self) -> str:
return "litserve_llm"
# ----------- 2. Pinecone Connection -----------
@mlflow.trace
def init_pinecone():
PINECONE_API_KEY = os.environ.get("PINECONE_API_KEY")
pc = Pinecone(api_key=PINECONE_API_KEY)
return pc.Index("rag-granite-index")
index = init_pinecone()
# ----------- 3. Embedding Model -----------
embeddings_model = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
# ----------- 4. Context Retrieval with Tracing -----------
@mlflow.trace
def get_retrieved_context(query: str, top_k=3):
"""Retrieve context from Pinecone with performance tracing"""
with mlflow.start_span("embedding_generation"):
start_time = time.time()
query_embedding = embeddings_model.embed_query(query)
mlflow.log_metric("embedding_latency", time.time() - start_time)
with mlflow.start_span("pinecone_query"):
start_time = time.time()
results = index.query(
namespace="rag-ns",
vector=query_embedding,
top_k=top_k,
include_metadata=True
)
mlflow.log_metric("pinecone_latency", time.time() - start_time)
mlflow.log_metric("retrieved_chunks", len(results['matches']))
context_parts = [match['metadata']['text'] for match in results['matches']]
return "\n".join(context_parts)
# ----------- 5. LLM Chain Setup -----------
model = LitServeLLM(
endpoint_url="https://8001-01k2h9d9mervcmgfn66ybkpwvq.cloudspaces.litng.ai/predict"
)
prompt = PromptTemplate(
input_variables=["context", "question"],
template="""
You are a smart assistant. Based on the provided context, answer the question in 1–2 lines only.
If the context has more details, summarize it concisely.
Context:
{context}
Question: {question}
Answer:
"""
)
llm_chain = LLMChain(llm=model, prompt=prompt)
# ----------- 6. RAG Pipeline with Full Tracing and Evaluation -----------
@mlflow.trace
def rag_pipeline(question):
"""End-to-end RAG pipeline with MLflow tracing and evaluation"""
try:
# Start a new nested run for each query
with mlflow.start_run(run_name=f"Query-{datetime.now().strftime('%H%M%S')}", nested=True):
mlflow.log_param("user_question", question)
# Retrieve context
retrieved_context = get_retrieved_context(question)
mlflow.log_text(retrieved_context, "artifacts/retrieved_context.txt")
# Generate response
start_time = time.time()
response = llm_chain.invoke({
"context": retrieved_context,
"question": question
})["text"].strip()
# Clean response
if "Answer:" in response:
response = response.split("Answer:", 1)[-1].strip()
# Log metrics
mlflow.log_metric("response_latency", time.time() - start_time)
mlflow.log_metric("response_length", len(response))
mlflow.log_text(response, "artifacts/response.txt")
# Evaluate the response against the retrieved context
evaluation_metrics = evaluator.evaluate_all(
question=question,
response=response,
reference=retrieved_context
)
# Log evaluation metrics to MLflow
for metric_name, metric_value in evaluation_metrics.items():
mlflow.log_metric(metric_name, metric_value)
return response
except Exception as e:
mlflow.log_metric("pipeline_errors", 1)
error_info = {
"error": str(e),
"question": question,
"timestamp": datetime.now().isoformat()
}
mlflow.log_dict(error_info, "artifacts/pipeline_errors.json")
return f"Error: {str(e)}"
# ----------- 7. Gradio UI with Enhanced Tracking -----------
with gr.Blocks() as demo:
gr.Markdown("# 🛠 Maintenance AI Assistant")
# Track additional UI metrics
usage_counter = gr.State(value=0)
session_start = gr.State(value=datetime.now().isoformat())
question_input = gr.Textbox(label="Ask your maintenance question")
answer_output = gr.Textbox(label="AI Response")
ask_button = gr.Button("Get Answer")
feedback = gr.Radio(["Helpful", "Not Helpful"], label="Was this response helpful?")
def track_usage(question, count, session_start, feedback=None):
"""Wrapper to track usage metrics with feedback"""
count += 1
# Start tracking context
with mlflow.start_run(run_name=f"User-Interaction-{count}", nested=True):
mlflow.log_param("question", question)
mlflow.log_param("session_start", session_start)
# Get response
response = rag_pipeline(question)
# Log feedback if provided
if feedback:
mlflow.log_param("user_feedback", feedback)
mlflow.log_metric("helpful_responses", 1 if feedback == "Helpful" else 0)
# Update metrics
mlflow.log_metric("total_queries", count)
return response, count, session_start
ask_button.click(
track_usage,
inputs=[question_input, usage_counter, session_start],
outputs=[answer_output, usage_counter, session_start]
)
feedback.change(
lambda feedback, question, count, session_start: track_usage(question, count, session_start, feedback),
inputs=[feedback, question_input, usage_counter, session_start],
outputs=[answer_output, usage_counter, session_start]
)
if __name__ == "__main__":
# Log deployment information
with mlflow.start_run(run_name="Deployment-Info"):
mlflow.log_params({
"app_version": "1.0.0",
"deployment_platform": "Lightning AI",
"deployment_time": datetime.now().isoformat(),
"code_version": os.getenv("GIT_COMMIT", "dev")
})
# Start Gradio app
demo.launch()