File size: 29,190 Bytes
8a58473
b7723b1
8a58473
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3700bac
b00d8c2
 
 
 
 
 
 
 
 
 
8a58473
b00d8c2
 
 
 
8a58473
 
b00d8c2
8a58473
 
 
b00d8c2
8a58473
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b00d8c2
 
 
 
 
 
8a58473
b00d8c2
8a58473
b00d8c2
 
 
8a58473
b00d8c2
 
8a58473
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b00d8c2
 
 
 
 
 
 
 
 
 
8a58473
b00d8c2
8a58473
b00d8c2
 
 
8a58473
b00d8c2
 
 
 
8a58473
 
b00d8c2
8a58473
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca246a0
68f2cae
 
c9e2b1b
8a58473
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b00d8c2
 
8a58473
 
b00d8c2
8a58473
b00d8c2
8a58473
d145778
 
8a58473
 
d145778
 
8a58473
 
d145778
8a58473
 
 
 
 
 
d145778
 
8a58473
 
d145778
 
 
8a58473
d145778
8a58473
b00d8c2
d145778
8a58473
 
 
 
 
b00d8c2
 
 
8a58473
b00d8c2
8a58473
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d145778
 
8a58473
 
d145778
 
 
8a58473
 
b00d8c2
8a58473
3700bac
 
 
 
 
 
 
ddfa055
 
3700bac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddfa055
 
 
3700bac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddfa055
 
 
 
 
 
 
 
 
 
 
3700bac
 
 
 
 
 
 
 
 
ddfa055
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3700bac
 
ddfa055
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3700bac
 
ddfa055
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3700bac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
'''
###
import os
import gradio as gr
import requests
from pinecone import Pinecone
from langchain.prompts import PromptTemplate
from langchain.chains.llm import LLMChain
from langchain.llms.base import LLM
from typing import Optional, List, Mapping, Any
from langchain.embeddings import HuggingFaceEmbeddings

# ----------- 1. Custom LLM to call your LitServe endpoint -----------
class LitServeLLM(LLM):
    endpoint_url: str

    def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
        payload = {"prompt": prompt}
        response = requests.post(self.endpoint_url, json=payload)
        if response.status_code == 200:
            data = response.json()
            return data.get("response", "").strip()
        else:
            raise ValueError(f"Request failed: {response.status_code} {response.text}")

    @property
    def _identifying_params(self) -> Mapping[str, Any]:
        return {"endpoint_url": self.endpoint_url}

    @property
    def _llm_type(self) -> str:
        return "litserve_llm"


# ----------- 2. Connect to Pinecone -----------
PINECONE_API_KEY = os.environ.get("PINECONE_API_KEY")
pc = Pinecone(api_key=PINECONE_API_KEY)
index = pc.Index("rag-granite-index")

# ----------- 3. Load embedding model -----------
embeddings_model = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")

# ----------- 4. Function to get top context from Pinecone -----------
def get_retrieved_context(query: str, top_k=3):
    query_embedding = embeddings_model.embed_query(query)
    results = index.query(
        namespace="rag-ns",
        vector=query_embedding,
        top_k=top_k,
        include_metadata=True
    )
    context_parts = [match['metadata']['text'] for match in results['matches']]
    return "\n".join(context_parts)

# ----------- 5. Create LLMChain with your model -----------
model = LitServeLLM(
    endpoint_url="https://8001-01k2h9d9mervcmgfn66ybkpwvq.cloudspaces.litng.ai/predict"
)

prompt = PromptTemplate(
    input_variables=["context", "question"],
    template="""
You are a smart assistant. Based on the provided context, answer the question in 1–2 lines only.
If the context has more details, summarize it concisely.

Context:
{context}

Question: {question}

Answer:
"""
)

llm_chain = LLMChain(llm=model, prompt=prompt)

# ----------- 6. Main RAG Function -----------
def rag_pipeline(question):
    try:
        retrieved_context = get_retrieved_context(question)
        response = llm_chain.invoke({
            "context": retrieved_context,
            "question": question
        })["text"].strip()

        # Only keep what's after "Answer:"
        if "Answer:" in response:
            response = response.split("Answer:", 1)[-1].strip()

        return response
    except Exception as e:
        return f"Error: {str(e)}"


# ----------- 7. Gradio UI -----------
with gr.Blocks() as demo:
    gr.Markdown("# 🧠 RAG Chatbot (Pinecone + LitServe)")
    question_input = gr.Textbox(label="Ask your question here")
    answer_output = gr.Textbox(label="Answer")
    ask_button = gr.Button("Get Answer")
    ask_button.click(rag_pipeline, inputs=question_input, outputs=answer_output)

if _name_ == "_main_":
    demo.launch()
'''



'''
import os
import gradio as gr
import requests
import mlflow
import dagshub
from pinecone import Pinecone
from langchain.prompts import PromptTemplate
from langchain.chains.llm import LLMChain
from langchain.llms.base import LLM
from typing import Optional, List, Mapping, Any
import time  
from langchain_community.embeddings import HuggingFaceEmbeddings
from dotenv import load_dotenv
from datetime import datetime

# Load environment variables
pinecone_api_key = os.environ["PINECONE_API_KEY"]

mlflow_tracking_uri = os.environ["MLFLOW_TRACKING_URI"]

# ----------- DagsHub & MLflow Setup -----------

dagshub.init(
    repo_owner='prathamesh.khade20',
    repo_name='Maintenance_AI_website',
    mlflow=True
)

mlflow.set_tracking_uri(mlflow_tracking_uri)
mlflow.set_experiment("Maintenance-RAG-Chatbot")
mlflow.langchain.autolog()



# Initialize MLflow run for app configuration
with mlflow.start_run(run_name=f"App-Config-{datetime.now().strftime('%Y%m%d-%H%M%S')}") as setup_run:
    # Log environment configuration
    mlflow.log_params({
        "pinecone_index": "rag-granite-index",
        "embedding_model": "all-MiniLM-L6-v2",
        "namespace": "rag-ns",
        "top_k": 3,
        "llm_endpoint": "https://8001-01k2h9d9mervcmgfn66ybkpwvq.cloudspaces.litng.ai/predict"
    })
    
    # Log important files as artifacts
    
    mlflow.log_text("""
You are a smart assistant. Based on the provided context, answer the question in 1–2 lines only.
If the context has more details, summarize it concisely.
Context:
{context}
Question: {question}
Answer:
""", "artifacts/prompt_template.txt")

# ----------- 1. Custom LLM for LitServe endpoint -----------
class LitServeLLM(LLM):
    endpoint_url: str

    @mlflow.trace
    def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
        payload = {"prompt": prompt}
        
        with mlflow.start_span("lit_serve_request"):
            start_time = time.time()
            response = requests.post(self.endpoint_url, json=payload)
            latency = time.time() - start_time
            
            mlflow.log_metric("lit_serve_latency", latency)
            
            if response.status_code == 200:
                data = response.json()
                mlflow.log_metric("response_tokens", len(data.get("response", "").split()))
                return data.get("response", "").strip()
            else:
                mlflow.log_metric("request_errors", 1)
                error_info = {
                    "status_code": response.status_code,
                    "error": response.text,
                    "timestamp": datetime.now().isoformat()
                }
                mlflow.log_dict(error_info, "artifacts/error_log.json")
                raise ValueError(f"Request failed: {response.status_code}")

    @property
    def _identifying_params(self) -> Mapping[str, Any]:
        return {"endpoint_url": self.endpoint_url}

    @property
    def _llm_type(self) -> str:
        return "litserve_llm"

# ----------- 2. Pinecone Connection -----------
@mlflow.trace
def init_pinecone():
    PINECONE_API_KEY = os.environ.get("PINECONE_API_KEY")
    pc = Pinecone(api_key=PINECONE_API_KEY)
    return pc.Index("rag-granite-index")

index = init_pinecone()

# ----------- 3. Embedding Model -----------
embeddings_model = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")

# ----------- 4. Context Retrieval with Tracing -----------
@mlflow.trace
def get_retrieved_context(query: str, top_k=3):
    """Retrieve context from Pinecone with performance tracing"""
    with mlflow.start_span("embedding_generation"):
        start_time = time.time()
        query_embedding = embeddings_model.embed_query(query)
        mlflow.log_metric("embedding_latency", time.time() - start_time)
    
    with mlflow.start_span("pinecone_query"):
        start_time = time.time()
        results = index.query(
            namespace="rag-ns",
            vector=query_embedding,
            top_k=top_k,
            include_metadata=True
        )
        mlflow.log_metric("pinecone_latency", time.time() - start_time)
        mlflow.log_metric("retrieved_chunks", len(results['matches']))
    
    context_parts = [match['metadata']['text'] for match in results['matches']]
    return "\n".join(context_parts)

# ----------- 5. LLM Chain Setup -----------
model = LitServeLLM(
    endpoint_url="https://8001-01k2h9d9mervcmgfn66ybkpwvq.cloudspaces.litng.ai/predict"
)

prompt = PromptTemplate(
    input_variables=["context", "question"],
    template="""
You are a smart assistant. Based on the provided context, answer the question in 1–2 lines only.
If the context has more details, summarize it concisely.
Context:
{context}
Question: {question}
Answer:
"""
)

llm_chain = LLMChain(llm=model, prompt=prompt)

# ----------- 6. RAG Pipeline with Full Tracing -----------
@mlflow.trace
def rag_pipeline(question):
    """End-to-end RAG pipeline with MLflow tracing"""
    try:
        # Start a new nested run for each query
        with mlflow.start_run(run_name=f"Query-{datetime.now().strftime('%H%M%S')}", nested=True):
            mlflow.log_param("user_question", question)
            
            # Retrieve context
            retrieved_context = get_retrieved_context(question)
            mlflow.log_text(retrieved_context, "artifacts/retrieved_context.txt")
            
            # Generate response
            start_time = time.time()
            response = llm_chain.invoke({
                "context": retrieved_context,
                "question": question
            })["text"].strip()
            
            # Clean response
            if "Answer:" in response:
                response = response.split("Answer:", 1)[-1].strip()
            
            # Log metrics
            mlflow.log_metric("response_latency", time.time() - start_time)
            mlflow.log_metric("response_length", len(response))
            mlflow.log_text(response, "artifacts/response.txt")
            
            return response
            
    except Exception as e:
        mlflow.log_metric("pipeline_errors", 1)
        error_info = {
            "error": str(e),
            "question": question,
            "timestamp": datetime.now().isoformat()
        }
        mlflow.log_dict(error_info, "artifacts/pipeline_errors.json")
        return f"Error: {str(e)}"

# ----------- 7. Gradio UI with Enhanced Tracking -----------
with gr.Blocks() as demo:
    gr.Markdown("# πŸ›  Maintenance AI Assistant")
    
    # Track additional UI metrics
    usage_counter = gr.State(value=0)
    session_start = gr.State(value=datetime.now().isoformat())
    
    question_input = gr.Textbox(label="Ask your maintenance question")
    answer_output = gr.Textbox(label="AI Response")
    ask_button = gr.Button("Get Answer")
    feedback = gr.Radio(["Helpful", "Not Helpful"], label="Was this response helpful?")
    
    def track_usage(question, count, session_start, feedback=None):
        """Wrapper to track usage metrics with feedback"""
        count += 1
        
        # Start tracking context
        with mlflow.start_run(run_name=f"User-Interaction-{count}", nested=True):
            mlflow.log_param("question", question)
            mlflow.log_param("session_start", session_start)
            
            # Get response
            response = rag_pipeline(question)
            
            # Log feedback if provided
            if feedback:
                mlflow.log_param("user_feedback", feedback)
                mlflow.log_metric("helpful_responses", 1 if feedback == "Helpful" else 0)
            
            # Update metrics
            mlflow.log_metric("total_queries", count)
            
            return response, count, session_start
    
    ask_button.click(
        track_usage, 
        inputs=[question_input, usage_counter, session_start], 
        outputs=[answer_output, usage_counter, session_start]
    )
    
    feedback.change(
        track_usage,
        inputs=[question_input, usage_counter, session_start, feedback],
        outputs=[answer_output, usage_counter, session_start]
    )

if _name_ == "_main_":
    # Log deployment information
    with mlflow.start_run(run_name="Deployment-Info"):
        mlflow.log_params({
            "app_version": "1.0.0",
            "deployment_platform": "Lightning AI",
            "deployment_time": datetime.now().isoformat(),
            "code_version": os.getenv("GIT_COMMIT", "dev")
        })
    
    # Start Gradio app
    demo.launch()

'''

import torch
import mauve
from sacrebleu import corpus_bleu
from rouge_score import rouge_scorer
from bert_score import score
from transformers import GPT2LMHeadModel, GPT2Tokenizer, pipeline, AutoTokenizer
import re
from mauve import compute_mauve
import os
import gradio as gr
import requests
import mlflow
import dagshub
from pinecone import Pinecone
from langchain.prompts import PromptTemplate
from langchain.chains.llm import LLMChain
from langchain.llms.base import LLM
from typing import Optional, List, Mapping, Any
import time  
from langchain_community.embeddings import HuggingFaceEmbeddings
from dotenv import load_dotenv
from datetime import datetime

# Load environment variables
load_dotenv()
pinecone_api_key = os.environ["PINECONE_API_KEY"]
mlflow_tracking_uri = os.environ["MLFLOW_TRACKING_URI"]

# ----------- DagsHub & MLflow Setup -----------
dagshub.init(
    repo_owner='prathamesh.khade20',
    repo_name='Maintenance_AI_website',
    mlflow=True
)

mlflow.set_tracking_uri(mlflow_tracking_uri)
mlflow.set_experiment("Maintenance-RAG-Chatbot")
mlflow.langchain.autolog()

# ----------- RAG Evaluator Class -----------
class RAGEvaluator:
    def __init__(self):
        self.gpt2_model, self.gpt2_tokenizer = self.load_gpt2_model()
        self.bias_pipeline = pipeline("zero-shot-classification", model="Hate-speech-CNERG/dehatebert-mono-english")
        # Initialize tokenizer for text processing
        self.tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
        
    def load_gpt2_model(self):
        model = GPT2LMHeadModel.from_pretrained('gpt2')
        tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
        return model, tokenizer

    def evaluate_bleu_rouge(self, candidates, references):
        bleu_score = corpus_bleu(candidates, [references]).score
        scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)
        rouge_scores = [scorer.score(ref, cand) for ref, cand in zip(references, candidates)]
        rouge1 = sum([score['rouge1'].fmeasure for score in rouge_scores]) / len(rouge_scores)
        rouge2 = sum([score['rouge2'].fmeasure for score in rouge_scores]) / len(rouge_scores)
        rougeL = sum([score['rougeL'].fmeasure for score in rouge_scores]) / len(rouge_scores)
        return bleu_score, rouge1, rouge2, rougeL

    def evaluate_bert_score(self, candidates, references):
        P, R, F1 = score(candidates, references, lang="en", model_type='bert-base-multilingual-cased')
        return P.mean().item(), R.mean().item(), F1.mean().item()

    def evaluate_perplexity(self, text):
        encodings = self.gpt2_tokenizer(text, return_tensors='pt')
        max_length = self.gpt2_model.config.n_positions
        stride = 512
        lls = []
        for i in range(0, encodings.input_ids.size(1), stride):
            begin_loc = max(i + stride - max_length, 0)
            end_loc = min(i + stride, encodings.input_ids.size(1))
            trg_len = end_loc - i
            input_ids = encodings.input_ids[:, begin_loc:end_loc]
            target_ids = input_ids.clone()
            target_ids[:, :-trg_len] = -100
            with torch.no_grad():
                outputs = self.gpt2_model(input_ids, labels=target_ids)
                log_likelihood = outputs[0] * trg_len
            lls.append(log_likelihood)
        ppl = torch.exp(torch.stack(lls).sum() / end_loc)
        return ppl.item()

    def evaluate_diversity(self, texts):
        # Use Hugging Face tokenizer instead of NLTK
        all_tokens = []
        for text in texts:
            tokens = self.tokenizer.tokenize(text)
            all_tokens.extend(tokens)
        
        # Create bigrams manually
        unique_bigrams = set()
        for i in range(len(all_tokens) - 1):
            unique_bigrams.add((all_tokens[i], all_tokens[i+1]))
        
        diversity_score = len(unique_bigrams) / len(all_tokens) if all_tokens else 0
        return diversity_score

    def evaluate_racial_bias(self, text):
        results = self.bias_pipeline([text], candidate_labels=["hate speech", "not hate speech"])
        bias_score = results[0]['scores'][results[0]['labels'].index('hate speech')]
        return bias_score

    def evaluate_meteor(self, candidates, references):
        # Simple approximation of METEOR without NLTK
        # This is a simplified version - consider using an external API for full METEOR
        meteor_scores = []
        for ref, cand in zip(references, candidates):
            ref_tokens = self.tokenizer.tokenize(ref)
            cand_tokens = self.tokenizer.tokenize(cand)
            
            # Calculate precision and recall
            common_tokens = set(ref_tokens) & set(cand_tokens)
            precision = len(common_tokens) / len(cand_tokens) if cand_tokens else 0
            recall = len(common_tokens) / len(ref_tokens) if ref_tokens else 0
            
            # F-measure with alpha=0.9 (METEOR default)
            if precision + recall == 0:
                f_score = 0
            else:
                f_score = (10 * precision * recall) / (9 * precision + recall)
            
            meteor_scores.append(f_score)
        
        return sum(meteor_scores) / len(meteor_scores) if meteor_scores else 0
    
    def evaluate_chrf(self, candidates, references):
        # Simple character n-gram F-score approximation
        chrf_scores = []
        for ref, cand in zip(references, candidates):
            # Character 6-grams
            ref_chars = list(ref)
            cand_chars = list(cand)
            
            ref_ngrams = set()
            cand_ngrams = set()
            
            # Create character 6-grams
            for i in range(len(ref_chars) - 5):
                ref_ngrams.add(tuple(ref_chars[i:i+6]))
            
            for i in range(len(cand_chars) - 5):
                cand_ngrams.add(tuple(cand_chars[i:i+6]))
            
            common_ngrams = ref_ngrams & cand_ngrams
            precision = len(common_ngrams) / len(cand_ngrams) if cand_ngrams else 0
            recall = len(common_ngrams) / len(ref_ngrams) if ref_ngrams else 0
            
            if precision + recall == 0:
                chrf_score = 0
            else:
                chrf_score = 2 * precision * recall / (precision + recall)
            
            chrf_scores.append(chrf_score)
        
        return sum(chrf_scores) / len(chrf_scores) if chrf_scores else 0
    
    def evaluate_readability(self, text):
        # Simple readability metrics without textstat
        words = re.findall(r'\b\w+\b', text.lower())
        sentences = re.split(r'[.!?]+', text)
        
        num_words = len(words)
        num_sentences = len([s for s in sentences if s.strip()])
        
        # Average word length
        avg_word_length = sum(len(word) for word in words) / num_words if num_words else 0
        
        # Words per sentence
        words_per_sentence = num_words / num_sentences if num_sentences else 0
        
        # Simplified Flesch Reading Ease approximation
        flesch_ease = 206.835 - (1.015 * words_per_sentence) - (84.6 * avg_word_length)
        
        # Simplified Flesch-Kincaid Grade Level approximation
        flesch_grade = (0.39 * words_per_sentence) + (11.8 * avg_word_length) - 15.59
        
        return flesch_ease, flesch_grade
        
    def evaluate_mauve(self, reference_texts, generated_texts):
        out = compute_mauve(
            p_text=reference_texts,
            q_text=generated_texts,
            device_id=0,
            max_text_length=1024,
            verbose=False
        )
        return out.mauve
        
    def evaluate_all(self, question, response, reference):
        candidates = [response]
        references = [reference]
        
        bleu, rouge1, rouge2, rougeL = self.evaluate_bleu_rouge(candidates, references)
        bert_p, bert_r, bert_f1 = self.evaluate_bert_score(candidates, references)
        perplexity = self.evaluate_perplexity(response)
        diversity = self.evaluate_diversity(candidates)
        racial_bias = self.evaluate_racial_bias(response)
        meteor = self.evaluate_meteor(candidates, references)
        chrf = self.evaluate_chrf(candidates, references)
        flesch_ease, flesch_grade = self.evaluate_readability(response)
        
        # Mauve requires multiple samples, so we'll handle it separately
        mauve_score = self.evaluate_mauve(references, candidates) if len(references) > 1 else 0.0
        
        return {
            "BLEU": bleu,
            "ROUGE-1": rouge1,
            "ROUGE-2": rouge2,
            "ROUGE-L": rougeL,
            "BERT_Precision": bert_p,
            "BERT_Recall": bert_r,
            "BERT_F1": bert_f1,
            "Perplexity": perplexity,
            "Diversity": diversity,
            "Racial_Bias": racial_bias,
            "MAUVE": mauve_score,
            "METEOR": meteor,
            "CHRF": chrf,
            "Flesch_Reading_Ease": flesch_ease,
            "Flesch_Kincaid_Grade": flesch_grade,
        }

# Initialize the evaluator
evaluator = RAGEvaluator()

# Initialize MLflow run for app configuration
with mlflow.start_run(run_name=f"App-Config-{datetime.now().strftime('%Y%m%d-%H%M%S')}") as setup_run:
    # Log environment configuration
    mlflow.log_params({
        "pinecone_index": "rag-granite-index",
        "embedding_model": "all-MiniLM-L6-v2",
        "namespace": "rag-ns",
        "top_k": 3,
        "llm_endpoint": "https://8001-01k2h9d9mervcmgfn66ybkpwvq.cloudspaces.litng.ai/predict"
    })
    
    # Log prompt template
    mlflow.log_text("""
You are a smart assistant. Based on the provided context, answer the question in 1–2 lines only.
If the context has more details, summarize it concisely.
Context:
{context}
Question: {question}
Answer:
""", "artifacts/prompt_template.txt")

# ----------- 1. Custom LLM for LitServe endpoint -----------
class LitServeLLM(LLM):
    endpoint_url: str

    @mlflow.trace
    def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
        payload = {"prompt": prompt}
        
        with mlflow.start_span("lit_serve_request"):
            start_time = time.time()
            response = requests.post(self.endpoint_url, json=payload)
            latency = time.time() - start_time
            
            mlflow.log_metric("lit_serve_latency", latency)
            
            if response.status_code == 200:
                data = response.json()
                mlflow.log_metric("response_tokens", len(data.get("response", "").split()))
                return data.get("response", "").strip()
            else:
                mlflow.log_metric("request_errors", 1)
                error_info = {
                    "status_code": response.status_code,
                    "error": response.text,
                    "timestamp": datetime.now().isoformat()
                }
                mlflow.log_dict(error_info, "artifacts/error_log.json")
                raise ValueError(f"Request failed: {response.status_code}")

    @property
    def _identifying_params(self) -> Mapping[str, Any]:
        return {"endpoint_url": self.endpoint_url}

    @property
    def _llm_type(self) -> str:
        return "litserve_llm"

# ----------- 2. Pinecone Connection -----------
@mlflow.trace
def init_pinecone():
    PINECONE_API_KEY = os.environ.get("PINECONE_API_KEY")
    pc = Pinecone(api_key=PINECONE_API_KEY)
    return pc.Index("rag-granite-index")

index = init_pinecone()

# ----------- 3. Embedding Model -----------
embeddings_model = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")

# ----------- 4. Context Retrieval with Tracing -----------
@mlflow.trace
def get_retrieved_context(query: str, top_k=3):
    """Retrieve context from Pinecone with performance tracing"""
    with mlflow.start_span("embedding_generation"):
        start_time = time.time()
        query_embedding = embeddings_model.embed_query(query)
        mlflow.log_metric("embedding_latency", time.time() - start_time)
    
    with mlflow.start_span("pinecone_query"):
        start_time = time.time()
        results = index.query(
            namespace="rag-ns",
            vector=query_embedding,
            top_k=top_k,
            include_metadata=True
        )
        mlflow.log_metric("pinecone_latency", time.time() - start_time)
        mlflow.log_metric("retrieved_chunks", len(results['matches']))
    
    context_parts = [match['metadata']['text'] for match in results['matches']]
    return "\n".join(context_parts)

# ----------- 5. LLM Chain Setup -----------
model = LitServeLLM(
    endpoint_url="https://8001-01k2h9d9mervcmgfn66ybkpwvq.cloudspaces.litng.ai/predict"
)

prompt = PromptTemplate(
    input_variables=["context", "question"],
    template="""
You are a smart assistant. Based on the provided context, answer the question in 1–2 lines only.
If the context has more details, summarize it concisely.
Context:
{context}
Question: {question}
Answer:
"""
)

llm_chain = LLMChain(llm=model, prompt=prompt)

# ----------- 6. RAG Pipeline with Full Tracing and Evaluation -----------
@mlflow.trace
def rag_pipeline(question):
    """End-to-end RAG pipeline with MLflow tracing and evaluation"""
    try:
        # Start a new nested run for each query
        with mlflow.start_run(run_name=f"Query-{datetime.now().strftime('%H%M%S')}", nested=True):
            mlflow.log_param("user_question", question)
            
            # Retrieve context
            retrieved_context = get_retrieved_context(question)
            mlflow.log_text(retrieved_context, "artifacts/retrieved_context.txt")
            
            # Generate response
            start_time = time.time()
            response = llm_chain.invoke({
                "context": retrieved_context,
                "question": question
            })["text"].strip()
            
            # Clean response
            if "Answer:" in response:
                response = response.split("Answer:", 1)[-1].strip()
            
            # Log metrics
            mlflow.log_metric("response_latency", time.time() - start_time)
            mlflow.log_metric("response_length", len(response))
            mlflow.log_text(response, "artifacts/response.txt")
            
            # Evaluate the response against the retrieved context
            evaluation_metrics = evaluator.evaluate_all(
                question=question,
                response=response,
                reference=retrieved_context
            )
            
            # Log evaluation metrics to MLflow
            for metric_name, metric_value in evaluation_metrics.items():
                mlflow.log_metric(metric_name, metric_value)
            
            return response
            
    except Exception as e:
        mlflow.log_metric("pipeline_errors", 1)
        error_info = {
            "error": str(e),
            "question": question,
            "timestamp": datetime.now().isoformat()
        }
        mlflow.log_dict(error_info, "artifacts/pipeline_errors.json")
        return f"Error: {str(e)}"

# ----------- 7. Gradio UI with Enhanced Tracking -----------
with gr.Blocks() as demo:
    gr.Markdown("# πŸ›  Maintenance AI Assistant")
    
    # Track additional UI metrics
    usage_counter = gr.State(value=0)
    session_start = gr.State(value=datetime.now().isoformat())
    
    question_input = gr.Textbox(label="Ask your maintenance question")
    answer_output = gr.Textbox(label="AI Response")
    ask_button = gr.Button("Get Answer")
    feedback = gr.Radio(["Helpful", "Not Helpful"], label="Was this response helpful?")
    
    def track_usage(question, count, session_start, feedback=None):
        """Wrapper to track usage metrics with feedback"""
        count += 1
        
        # Start tracking context
        with mlflow.start_run(run_name=f"User-Interaction-{count}", nested=True):
            mlflow.log_param("question", question)
            mlflow.log_param("session_start", session_start)
            
            # Get response
            response = rag_pipeline(question)
            
            # Log feedback if provided
            if feedback:
                mlflow.log_param("user_feedback", feedback)
                mlflow.log_metric("helpful_responses", 1 if feedback == "Helpful" else 0)
            
            # Update metrics
            mlflow.log_metric("total_queries", count)
            
            return response, count, session_start
    
    ask_button.click(
        track_usage, 
        inputs=[question_input, usage_counter, session_start], 
        outputs=[answer_output, usage_counter, session_start]
    )
    
    feedback.change(
        lambda feedback, question, count, session_start: track_usage(question, count, session_start, feedback),
        inputs=[feedback, question_input, usage_counter, session_start],
        outputs=[answer_output, usage_counter, session_start]
    )

if __name__ == "__main__":
    # Log deployment information
    with mlflow.start_run(run_name="Deployment-Info"):
        mlflow.log_params({
            "app_version": "1.0.0",
            "deployment_platform": "Lightning AI",
            "deployment_time": datetime.now().isoformat(),
            "code_version": os.getenv("GIT_COMMIT", "dev")
        })
    
    # Start Gradio app
    demo.launch()