Spaces:
Runtime error
Runtime error
File size: 29,190 Bytes
8a58473 b7723b1 8a58473 3700bac b00d8c2 8a58473 b00d8c2 8a58473 b00d8c2 8a58473 b00d8c2 8a58473 b00d8c2 8a58473 b00d8c2 8a58473 b00d8c2 8a58473 b00d8c2 8a58473 b00d8c2 8a58473 b00d8c2 8a58473 b00d8c2 8a58473 b00d8c2 8a58473 b00d8c2 8a58473 ca246a0 68f2cae c9e2b1b 8a58473 b00d8c2 8a58473 b00d8c2 8a58473 b00d8c2 8a58473 d145778 8a58473 d145778 8a58473 d145778 8a58473 d145778 8a58473 d145778 8a58473 d145778 8a58473 b00d8c2 d145778 8a58473 b00d8c2 8a58473 b00d8c2 8a58473 d145778 8a58473 d145778 8a58473 b00d8c2 8a58473 3700bac ddfa055 3700bac ddfa055 3700bac ddfa055 3700bac ddfa055 3700bac ddfa055 3700bac ddfa055 3700bac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 |
'''
###
import os
import gradio as gr
import requests
from pinecone import Pinecone
from langchain.prompts import PromptTemplate
from langchain.chains.llm import LLMChain
from langchain.llms.base import LLM
from typing import Optional, List, Mapping, Any
from langchain.embeddings import HuggingFaceEmbeddings
# ----------- 1. Custom LLM to call your LitServe endpoint -----------
class LitServeLLM(LLM):
endpoint_url: str
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
payload = {"prompt": prompt}
response = requests.post(self.endpoint_url, json=payload)
if response.status_code == 200:
data = response.json()
return data.get("response", "").strip()
else:
raise ValueError(f"Request failed: {response.status_code} {response.text}")
@property
def _identifying_params(self) -> Mapping[str, Any]:
return {"endpoint_url": self.endpoint_url}
@property
def _llm_type(self) -> str:
return "litserve_llm"
# ----------- 2. Connect to Pinecone -----------
PINECONE_API_KEY = os.environ.get("PINECONE_API_KEY")
pc = Pinecone(api_key=PINECONE_API_KEY)
index = pc.Index("rag-granite-index")
# ----------- 3. Load embedding model -----------
embeddings_model = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
# ----------- 4. Function to get top context from Pinecone -----------
def get_retrieved_context(query: str, top_k=3):
query_embedding = embeddings_model.embed_query(query)
results = index.query(
namespace="rag-ns",
vector=query_embedding,
top_k=top_k,
include_metadata=True
)
context_parts = [match['metadata']['text'] for match in results['matches']]
return "\n".join(context_parts)
# ----------- 5. Create LLMChain with your model -----------
model = LitServeLLM(
endpoint_url="https://8001-01k2h9d9mervcmgfn66ybkpwvq.cloudspaces.litng.ai/predict"
)
prompt = PromptTemplate(
input_variables=["context", "question"],
template="""
You are a smart assistant. Based on the provided context, answer the question in 1β2 lines only.
If the context has more details, summarize it concisely.
Context:
{context}
Question: {question}
Answer:
"""
)
llm_chain = LLMChain(llm=model, prompt=prompt)
# ----------- 6. Main RAG Function -----------
def rag_pipeline(question):
try:
retrieved_context = get_retrieved_context(question)
response = llm_chain.invoke({
"context": retrieved_context,
"question": question
})["text"].strip()
# Only keep what's after "Answer:"
if "Answer:" in response:
response = response.split("Answer:", 1)[-1].strip()
return response
except Exception as e:
return f"Error: {str(e)}"
# ----------- 7. Gradio UI -----------
with gr.Blocks() as demo:
gr.Markdown("# π§ RAG Chatbot (Pinecone + LitServe)")
question_input = gr.Textbox(label="Ask your question here")
answer_output = gr.Textbox(label="Answer")
ask_button = gr.Button("Get Answer")
ask_button.click(rag_pipeline, inputs=question_input, outputs=answer_output)
if _name_ == "_main_":
demo.launch()
'''
'''
import os
import gradio as gr
import requests
import mlflow
import dagshub
from pinecone import Pinecone
from langchain.prompts import PromptTemplate
from langchain.chains.llm import LLMChain
from langchain.llms.base import LLM
from typing import Optional, List, Mapping, Any
import time
from langchain_community.embeddings import HuggingFaceEmbeddings
from dotenv import load_dotenv
from datetime import datetime
# Load environment variables
pinecone_api_key = os.environ["PINECONE_API_KEY"]
mlflow_tracking_uri = os.environ["MLFLOW_TRACKING_URI"]
# ----------- DagsHub & MLflow Setup -----------
dagshub.init(
repo_owner='prathamesh.khade20',
repo_name='Maintenance_AI_website',
mlflow=True
)
mlflow.set_tracking_uri(mlflow_tracking_uri)
mlflow.set_experiment("Maintenance-RAG-Chatbot")
mlflow.langchain.autolog()
# Initialize MLflow run for app configuration
with mlflow.start_run(run_name=f"App-Config-{datetime.now().strftime('%Y%m%d-%H%M%S')}") as setup_run:
# Log environment configuration
mlflow.log_params({
"pinecone_index": "rag-granite-index",
"embedding_model": "all-MiniLM-L6-v2",
"namespace": "rag-ns",
"top_k": 3,
"llm_endpoint": "https://8001-01k2h9d9mervcmgfn66ybkpwvq.cloudspaces.litng.ai/predict"
})
# Log important files as artifacts
mlflow.log_text("""
You are a smart assistant. Based on the provided context, answer the question in 1β2 lines only.
If the context has more details, summarize it concisely.
Context:
{context}
Question: {question}
Answer:
""", "artifacts/prompt_template.txt")
# ----------- 1. Custom LLM for LitServe endpoint -----------
class LitServeLLM(LLM):
endpoint_url: str
@mlflow.trace
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
payload = {"prompt": prompt}
with mlflow.start_span("lit_serve_request"):
start_time = time.time()
response = requests.post(self.endpoint_url, json=payload)
latency = time.time() - start_time
mlflow.log_metric("lit_serve_latency", latency)
if response.status_code == 200:
data = response.json()
mlflow.log_metric("response_tokens", len(data.get("response", "").split()))
return data.get("response", "").strip()
else:
mlflow.log_metric("request_errors", 1)
error_info = {
"status_code": response.status_code,
"error": response.text,
"timestamp": datetime.now().isoformat()
}
mlflow.log_dict(error_info, "artifacts/error_log.json")
raise ValueError(f"Request failed: {response.status_code}")
@property
def _identifying_params(self) -> Mapping[str, Any]:
return {"endpoint_url": self.endpoint_url}
@property
def _llm_type(self) -> str:
return "litserve_llm"
# ----------- 2. Pinecone Connection -----------
@mlflow.trace
def init_pinecone():
PINECONE_API_KEY = os.environ.get("PINECONE_API_KEY")
pc = Pinecone(api_key=PINECONE_API_KEY)
return pc.Index("rag-granite-index")
index = init_pinecone()
# ----------- 3. Embedding Model -----------
embeddings_model = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
# ----------- 4. Context Retrieval with Tracing -----------
@mlflow.trace
def get_retrieved_context(query: str, top_k=3):
"""Retrieve context from Pinecone with performance tracing"""
with mlflow.start_span("embedding_generation"):
start_time = time.time()
query_embedding = embeddings_model.embed_query(query)
mlflow.log_metric("embedding_latency", time.time() - start_time)
with mlflow.start_span("pinecone_query"):
start_time = time.time()
results = index.query(
namespace="rag-ns",
vector=query_embedding,
top_k=top_k,
include_metadata=True
)
mlflow.log_metric("pinecone_latency", time.time() - start_time)
mlflow.log_metric("retrieved_chunks", len(results['matches']))
context_parts = [match['metadata']['text'] for match in results['matches']]
return "\n".join(context_parts)
# ----------- 5. LLM Chain Setup -----------
model = LitServeLLM(
endpoint_url="https://8001-01k2h9d9mervcmgfn66ybkpwvq.cloudspaces.litng.ai/predict"
)
prompt = PromptTemplate(
input_variables=["context", "question"],
template="""
You are a smart assistant. Based on the provided context, answer the question in 1β2 lines only.
If the context has more details, summarize it concisely.
Context:
{context}
Question: {question}
Answer:
"""
)
llm_chain = LLMChain(llm=model, prompt=prompt)
# ----------- 6. RAG Pipeline with Full Tracing -----------
@mlflow.trace
def rag_pipeline(question):
"""End-to-end RAG pipeline with MLflow tracing"""
try:
# Start a new nested run for each query
with mlflow.start_run(run_name=f"Query-{datetime.now().strftime('%H%M%S')}", nested=True):
mlflow.log_param("user_question", question)
# Retrieve context
retrieved_context = get_retrieved_context(question)
mlflow.log_text(retrieved_context, "artifacts/retrieved_context.txt")
# Generate response
start_time = time.time()
response = llm_chain.invoke({
"context": retrieved_context,
"question": question
})["text"].strip()
# Clean response
if "Answer:" in response:
response = response.split("Answer:", 1)[-1].strip()
# Log metrics
mlflow.log_metric("response_latency", time.time() - start_time)
mlflow.log_metric("response_length", len(response))
mlflow.log_text(response, "artifacts/response.txt")
return response
except Exception as e:
mlflow.log_metric("pipeline_errors", 1)
error_info = {
"error": str(e),
"question": question,
"timestamp": datetime.now().isoformat()
}
mlflow.log_dict(error_info, "artifacts/pipeline_errors.json")
return f"Error: {str(e)}"
# ----------- 7. Gradio UI with Enhanced Tracking -----------
with gr.Blocks() as demo:
gr.Markdown("# π Maintenance AI Assistant")
# Track additional UI metrics
usage_counter = gr.State(value=0)
session_start = gr.State(value=datetime.now().isoformat())
question_input = gr.Textbox(label="Ask your maintenance question")
answer_output = gr.Textbox(label="AI Response")
ask_button = gr.Button("Get Answer")
feedback = gr.Radio(["Helpful", "Not Helpful"], label="Was this response helpful?")
def track_usage(question, count, session_start, feedback=None):
"""Wrapper to track usage metrics with feedback"""
count += 1
# Start tracking context
with mlflow.start_run(run_name=f"User-Interaction-{count}", nested=True):
mlflow.log_param("question", question)
mlflow.log_param("session_start", session_start)
# Get response
response = rag_pipeline(question)
# Log feedback if provided
if feedback:
mlflow.log_param("user_feedback", feedback)
mlflow.log_metric("helpful_responses", 1 if feedback == "Helpful" else 0)
# Update metrics
mlflow.log_metric("total_queries", count)
return response, count, session_start
ask_button.click(
track_usage,
inputs=[question_input, usage_counter, session_start],
outputs=[answer_output, usage_counter, session_start]
)
feedback.change(
track_usage,
inputs=[question_input, usage_counter, session_start, feedback],
outputs=[answer_output, usage_counter, session_start]
)
if _name_ == "_main_":
# Log deployment information
with mlflow.start_run(run_name="Deployment-Info"):
mlflow.log_params({
"app_version": "1.0.0",
"deployment_platform": "Lightning AI",
"deployment_time": datetime.now().isoformat(),
"code_version": os.getenv("GIT_COMMIT", "dev")
})
# Start Gradio app
demo.launch()
'''
import torch
import mauve
from sacrebleu import corpus_bleu
from rouge_score import rouge_scorer
from bert_score import score
from transformers import GPT2LMHeadModel, GPT2Tokenizer, pipeline, AutoTokenizer
import re
from mauve import compute_mauve
import os
import gradio as gr
import requests
import mlflow
import dagshub
from pinecone import Pinecone
from langchain.prompts import PromptTemplate
from langchain.chains.llm import LLMChain
from langchain.llms.base import LLM
from typing import Optional, List, Mapping, Any
import time
from langchain_community.embeddings import HuggingFaceEmbeddings
from dotenv import load_dotenv
from datetime import datetime
# Load environment variables
load_dotenv()
pinecone_api_key = os.environ["PINECONE_API_KEY"]
mlflow_tracking_uri = os.environ["MLFLOW_TRACKING_URI"]
# ----------- DagsHub & MLflow Setup -----------
dagshub.init(
repo_owner='prathamesh.khade20',
repo_name='Maintenance_AI_website',
mlflow=True
)
mlflow.set_tracking_uri(mlflow_tracking_uri)
mlflow.set_experiment("Maintenance-RAG-Chatbot")
mlflow.langchain.autolog()
# ----------- RAG Evaluator Class -----------
class RAGEvaluator:
def __init__(self):
self.gpt2_model, self.gpt2_tokenizer = self.load_gpt2_model()
self.bias_pipeline = pipeline("zero-shot-classification", model="Hate-speech-CNERG/dehatebert-mono-english")
# Initialize tokenizer for text processing
self.tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
def load_gpt2_model(self):
model = GPT2LMHeadModel.from_pretrained('gpt2')
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
return model, tokenizer
def evaluate_bleu_rouge(self, candidates, references):
bleu_score = corpus_bleu(candidates, [references]).score
scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)
rouge_scores = [scorer.score(ref, cand) for ref, cand in zip(references, candidates)]
rouge1 = sum([score['rouge1'].fmeasure for score in rouge_scores]) / len(rouge_scores)
rouge2 = sum([score['rouge2'].fmeasure for score in rouge_scores]) / len(rouge_scores)
rougeL = sum([score['rougeL'].fmeasure for score in rouge_scores]) / len(rouge_scores)
return bleu_score, rouge1, rouge2, rougeL
def evaluate_bert_score(self, candidates, references):
P, R, F1 = score(candidates, references, lang="en", model_type='bert-base-multilingual-cased')
return P.mean().item(), R.mean().item(), F1.mean().item()
def evaluate_perplexity(self, text):
encodings = self.gpt2_tokenizer(text, return_tensors='pt')
max_length = self.gpt2_model.config.n_positions
stride = 512
lls = []
for i in range(0, encodings.input_ids.size(1), stride):
begin_loc = max(i + stride - max_length, 0)
end_loc = min(i + stride, encodings.input_ids.size(1))
trg_len = end_loc - i
input_ids = encodings.input_ids[:, begin_loc:end_loc]
target_ids = input_ids.clone()
target_ids[:, :-trg_len] = -100
with torch.no_grad():
outputs = self.gpt2_model(input_ids, labels=target_ids)
log_likelihood = outputs[0] * trg_len
lls.append(log_likelihood)
ppl = torch.exp(torch.stack(lls).sum() / end_loc)
return ppl.item()
def evaluate_diversity(self, texts):
# Use Hugging Face tokenizer instead of NLTK
all_tokens = []
for text in texts:
tokens = self.tokenizer.tokenize(text)
all_tokens.extend(tokens)
# Create bigrams manually
unique_bigrams = set()
for i in range(len(all_tokens) - 1):
unique_bigrams.add((all_tokens[i], all_tokens[i+1]))
diversity_score = len(unique_bigrams) / len(all_tokens) if all_tokens else 0
return diversity_score
def evaluate_racial_bias(self, text):
results = self.bias_pipeline([text], candidate_labels=["hate speech", "not hate speech"])
bias_score = results[0]['scores'][results[0]['labels'].index('hate speech')]
return bias_score
def evaluate_meteor(self, candidates, references):
# Simple approximation of METEOR without NLTK
# This is a simplified version - consider using an external API for full METEOR
meteor_scores = []
for ref, cand in zip(references, candidates):
ref_tokens = self.tokenizer.tokenize(ref)
cand_tokens = self.tokenizer.tokenize(cand)
# Calculate precision and recall
common_tokens = set(ref_tokens) & set(cand_tokens)
precision = len(common_tokens) / len(cand_tokens) if cand_tokens else 0
recall = len(common_tokens) / len(ref_tokens) if ref_tokens else 0
# F-measure with alpha=0.9 (METEOR default)
if precision + recall == 0:
f_score = 0
else:
f_score = (10 * precision * recall) / (9 * precision + recall)
meteor_scores.append(f_score)
return sum(meteor_scores) / len(meteor_scores) if meteor_scores else 0
def evaluate_chrf(self, candidates, references):
# Simple character n-gram F-score approximation
chrf_scores = []
for ref, cand in zip(references, candidates):
# Character 6-grams
ref_chars = list(ref)
cand_chars = list(cand)
ref_ngrams = set()
cand_ngrams = set()
# Create character 6-grams
for i in range(len(ref_chars) - 5):
ref_ngrams.add(tuple(ref_chars[i:i+6]))
for i in range(len(cand_chars) - 5):
cand_ngrams.add(tuple(cand_chars[i:i+6]))
common_ngrams = ref_ngrams & cand_ngrams
precision = len(common_ngrams) / len(cand_ngrams) if cand_ngrams else 0
recall = len(common_ngrams) / len(ref_ngrams) if ref_ngrams else 0
if precision + recall == 0:
chrf_score = 0
else:
chrf_score = 2 * precision * recall / (precision + recall)
chrf_scores.append(chrf_score)
return sum(chrf_scores) / len(chrf_scores) if chrf_scores else 0
def evaluate_readability(self, text):
# Simple readability metrics without textstat
words = re.findall(r'\b\w+\b', text.lower())
sentences = re.split(r'[.!?]+', text)
num_words = len(words)
num_sentences = len([s for s in sentences if s.strip()])
# Average word length
avg_word_length = sum(len(word) for word in words) / num_words if num_words else 0
# Words per sentence
words_per_sentence = num_words / num_sentences if num_sentences else 0
# Simplified Flesch Reading Ease approximation
flesch_ease = 206.835 - (1.015 * words_per_sentence) - (84.6 * avg_word_length)
# Simplified Flesch-Kincaid Grade Level approximation
flesch_grade = (0.39 * words_per_sentence) + (11.8 * avg_word_length) - 15.59
return flesch_ease, flesch_grade
def evaluate_mauve(self, reference_texts, generated_texts):
out = compute_mauve(
p_text=reference_texts,
q_text=generated_texts,
device_id=0,
max_text_length=1024,
verbose=False
)
return out.mauve
def evaluate_all(self, question, response, reference):
candidates = [response]
references = [reference]
bleu, rouge1, rouge2, rougeL = self.evaluate_bleu_rouge(candidates, references)
bert_p, bert_r, bert_f1 = self.evaluate_bert_score(candidates, references)
perplexity = self.evaluate_perplexity(response)
diversity = self.evaluate_diversity(candidates)
racial_bias = self.evaluate_racial_bias(response)
meteor = self.evaluate_meteor(candidates, references)
chrf = self.evaluate_chrf(candidates, references)
flesch_ease, flesch_grade = self.evaluate_readability(response)
# Mauve requires multiple samples, so we'll handle it separately
mauve_score = self.evaluate_mauve(references, candidates) if len(references) > 1 else 0.0
return {
"BLEU": bleu,
"ROUGE-1": rouge1,
"ROUGE-2": rouge2,
"ROUGE-L": rougeL,
"BERT_Precision": bert_p,
"BERT_Recall": bert_r,
"BERT_F1": bert_f1,
"Perplexity": perplexity,
"Diversity": diversity,
"Racial_Bias": racial_bias,
"MAUVE": mauve_score,
"METEOR": meteor,
"CHRF": chrf,
"Flesch_Reading_Ease": flesch_ease,
"Flesch_Kincaid_Grade": flesch_grade,
}
# Initialize the evaluator
evaluator = RAGEvaluator()
# Initialize MLflow run for app configuration
with mlflow.start_run(run_name=f"App-Config-{datetime.now().strftime('%Y%m%d-%H%M%S')}") as setup_run:
# Log environment configuration
mlflow.log_params({
"pinecone_index": "rag-granite-index",
"embedding_model": "all-MiniLM-L6-v2",
"namespace": "rag-ns",
"top_k": 3,
"llm_endpoint": "https://8001-01k2h9d9mervcmgfn66ybkpwvq.cloudspaces.litng.ai/predict"
})
# Log prompt template
mlflow.log_text("""
You are a smart assistant. Based on the provided context, answer the question in 1β2 lines only.
If the context has more details, summarize it concisely.
Context:
{context}
Question: {question}
Answer:
""", "artifacts/prompt_template.txt")
# ----------- 1. Custom LLM for LitServe endpoint -----------
class LitServeLLM(LLM):
endpoint_url: str
@mlflow.trace
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
payload = {"prompt": prompt}
with mlflow.start_span("lit_serve_request"):
start_time = time.time()
response = requests.post(self.endpoint_url, json=payload)
latency = time.time() - start_time
mlflow.log_metric("lit_serve_latency", latency)
if response.status_code == 200:
data = response.json()
mlflow.log_metric("response_tokens", len(data.get("response", "").split()))
return data.get("response", "").strip()
else:
mlflow.log_metric("request_errors", 1)
error_info = {
"status_code": response.status_code,
"error": response.text,
"timestamp": datetime.now().isoformat()
}
mlflow.log_dict(error_info, "artifacts/error_log.json")
raise ValueError(f"Request failed: {response.status_code}")
@property
def _identifying_params(self) -> Mapping[str, Any]:
return {"endpoint_url": self.endpoint_url}
@property
def _llm_type(self) -> str:
return "litserve_llm"
# ----------- 2. Pinecone Connection -----------
@mlflow.trace
def init_pinecone():
PINECONE_API_KEY = os.environ.get("PINECONE_API_KEY")
pc = Pinecone(api_key=PINECONE_API_KEY)
return pc.Index("rag-granite-index")
index = init_pinecone()
# ----------- 3. Embedding Model -----------
embeddings_model = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
# ----------- 4. Context Retrieval with Tracing -----------
@mlflow.trace
def get_retrieved_context(query: str, top_k=3):
"""Retrieve context from Pinecone with performance tracing"""
with mlflow.start_span("embedding_generation"):
start_time = time.time()
query_embedding = embeddings_model.embed_query(query)
mlflow.log_metric("embedding_latency", time.time() - start_time)
with mlflow.start_span("pinecone_query"):
start_time = time.time()
results = index.query(
namespace="rag-ns",
vector=query_embedding,
top_k=top_k,
include_metadata=True
)
mlflow.log_metric("pinecone_latency", time.time() - start_time)
mlflow.log_metric("retrieved_chunks", len(results['matches']))
context_parts = [match['metadata']['text'] for match in results['matches']]
return "\n".join(context_parts)
# ----------- 5. LLM Chain Setup -----------
model = LitServeLLM(
endpoint_url="https://8001-01k2h9d9mervcmgfn66ybkpwvq.cloudspaces.litng.ai/predict"
)
prompt = PromptTemplate(
input_variables=["context", "question"],
template="""
You are a smart assistant. Based on the provided context, answer the question in 1β2 lines only.
If the context has more details, summarize it concisely.
Context:
{context}
Question: {question}
Answer:
"""
)
llm_chain = LLMChain(llm=model, prompt=prompt)
# ----------- 6. RAG Pipeline with Full Tracing and Evaluation -----------
@mlflow.trace
def rag_pipeline(question):
"""End-to-end RAG pipeline with MLflow tracing and evaluation"""
try:
# Start a new nested run for each query
with mlflow.start_run(run_name=f"Query-{datetime.now().strftime('%H%M%S')}", nested=True):
mlflow.log_param("user_question", question)
# Retrieve context
retrieved_context = get_retrieved_context(question)
mlflow.log_text(retrieved_context, "artifacts/retrieved_context.txt")
# Generate response
start_time = time.time()
response = llm_chain.invoke({
"context": retrieved_context,
"question": question
})["text"].strip()
# Clean response
if "Answer:" in response:
response = response.split("Answer:", 1)[-1].strip()
# Log metrics
mlflow.log_metric("response_latency", time.time() - start_time)
mlflow.log_metric("response_length", len(response))
mlflow.log_text(response, "artifacts/response.txt")
# Evaluate the response against the retrieved context
evaluation_metrics = evaluator.evaluate_all(
question=question,
response=response,
reference=retrieved_context
)
# Log evaluation metrics to MLflow
for metric_name, metric_value in evaluation_metrics.items():
mlflow.log_metric(metric_name, metric_value)
return response
except Exception as e:
mlflow.log_metric("pipeline_errors", 1)
error_info = {
"error": str(e),
"question": question,
"timestamp": datetime.now().isoformat()
}
mlflow.log_dict(error_info, "artifacts/pipeline_errors.json")
return f"Error: {str(e)}"
# ----------- 7. Gradio UI with Enhanced Tracking -----------
with gr.Blocks() as demo:
gr.Markdown("# π Maintenance AI Assistant")
# Track additional UI metrics
usage_counter = gr.State(value=0)
session_start = gr.State(value=datetime.now().isoformat())
question_input = gr.Textbox(label="Ask your maintenance question")
answer_output = gr.Textbox(label="AI Response")
ask_button = gr.Button("Get Answer")
feedback = gr.Radio(["Helpful", "Not Helpful"], label="Was this response helpful?")
def track_usage(question, count, session_start, feedback=None):
"""Wrapper to track usage metrics with feedback"""
count += 1
# Start tracking context
with mlflow.start_run(run_name=f"User-Interaction-{count}", nested=True):
mlflow.log_param("question", question)
mlflow.log_param("session_start", session_start)
# Get response
response = rag_pipeline(question)
# Log feedback if provided
if feedback:
mlflow.log_param("user_feedback", feedback)
mlflow.log_metric("helpful_responses", 1 if feedback == "Helpful" else 0)
# Update metrics
mlflow.log_metric("total_queries", count)
return response, count, session_start
ask_button.click(
track_usage,
inputs=[question_input, usage_counter, session_start],
outputs=[answer_output, usage_counter, session_start]
)
feedback.change(
lambda feedback, question, count, session_start: track_usage(question, count, session_start, feedback),
inputs=[feedback, question_input, usage_counter, session_start],
outputs=[answer_output, usage_counter, session_start]
)
if __name__ == "__main__":
# Log deployment information
with mlflow.start_run(run_name="Deployment-Info"):
mlflow.log_params({
"app_version": "1.0.0",
"deployment_platform": "Lightning AI",
"deployment_time": datetime.now().isoformat(),
"code_version": os.getenv("GIT_COMMIT", "dev")
})
# Start Gradio app
demo.launch() |