Prathamesh1420's picture
Update app.py
e19627e verified
import gradio as gr
import pandas as pd
import numpy as np
from statsmodels.tsa.arima.model import ARIMA
from sklearn.metrics import mean_squared_error, mean_absolute_error
import matplotlib.pyplot as plt
import io
import base64
# βœ… Mapping of best ARIMA orders per part number
# (replace with your actual best parameters from the notebook)
BEST_ARIMA_PARAMS = {
"TE50011": (2, 0, 1),
"TE50012": (2, 1, 1),
"TE50013": (1, 1, 1),
"TE50014": (0, 0, 0),
"TE50015": (0, 1, 0),
"TE50016": (0, 1, 1),
"TE50017": (2, 1, 0),
"TE50018": (1, 1, 2),
"TE50019": (2, 1, 0),
"TE50020": (2, 1, 1),
"TE50021": (0, 0, 0),
"TE50022": (2, 1, 2),
"TE50023": (1, 0, 0),
"TE50024": (1, 1, 2),
"TE50025": (1, 1, 0),
"TE50026": (2, 0, 0),
"TE50027": (0, 0, 2),
"TE50028": (1, 0, 1),
"TE50029": (0, 1, 0),
"TE50030": (0, 1, 0),
"TE50031": (1, 1, 0),
"TE50032": (1, 1, 0),
"TE50033": (2, 1, 1),
"TE50034": (0, 0, 0),
"TE50035": (2, 1, 0),
"TE50036": (0, 1, 0),
"TE50037": (0, 0, 2),
"TE50038": (2, 1, 1),
"TE50039": (2, 0, 1),
"TE50040": (1, 1, 1),
"TE50041": (1, 1, 0),
"TE50042": (0, 1, 0),
"TE50043": (2, 1, 0),
"TE50044": (0, 1, 0),
"TE50045": (1, 0, 0),
"TE50046": (0, 1, 0),
"TE50047": (1, 1, 2),
"TE50048": (0, 1, 0),
"TE50049": (2, 1, 2),
"TE50050": (2, 0, 2),
"TE50051": (0, 1, 0),
"TE50052": (2, 0, 1),
"TE50053": (1, 0, 2),
"TE50054": (1, 1, 0),
"TE50055": (0, 0, 0),
"TE50056": (2, 0, 2),
"TE50057": (0, 1, 0),
"TE50058": (1, 1, 0),
"TE50059": (0, 1, 0),
"TE50060": (1, 1, 2),
"TE50061": (2, 1, 0),
"TE50062": (1, 1, 2),
"TE50063": (0, 0, 2),
"TE50064": (0, 1, 0),
"TE50065": (0, 1, 0),
"TE50066": (2, 1, 0),
"TE50067": (2, 1, 0),
"TE50068": (1, 1, 0),
"TE50069": (0, 1, 2),
"TE50070": (1, 1, 1),
"TE50071": (2, 1, 2),
"TE50072": (2, 0, 2),
"TE50073": (2, 0, 1),
"TE50074": (0, 1, 1),
"TE50075": (2, 1, 0),
"TE50076": (0, 1, 0),
"TE50077": (0, 1, 2),
"TE50078": (2, 1, 0),
"TE50079": (0, 1, 0),
"TE50080": (2, 1, 2),
"TE50081": (2, 1, 0),
"TE50082": (0, 1, 0),
"TE50083": (2, 1, 0),
"TE50084": (0, 1, 0),
"TE50085": (2, 1, 0),
"TE50086": (0, 1, 1),
"TE50087": (2, 0, 1),
"TE50088": (2, 1, 0),
"TE50089": (2, 0, 2),
"TE50090": (0, 1, 1),
"TE50091": (0, 1, 0),
"TE50092": (0, 1, 0),
"TE50093": (2, 0, 2),
"TE50094": (2, 0, 1),
"TE50095": (1, 0, 0),
"TE50096": (0, 1, 0),
"TE50097": (0, 1, 0),
"TE50098": (1, 1, 0),
"TE50099": (0, 1, 0),
"TE50100": (2, 0, 2),
"TE50101": (2, 0, 2),
"TE50102": (1, 1, 1),
"TE50103": (0, 0, 1),
"TE50104": (0, 1, 0),
"TE50105": (2, 0, 0),
"TE50106": (2, 0, 0),
"TE50107": (2, 0, 0),
"TE50108": (2, 1, 0),
"TE50109": (2, 1, 0),
"TE50110": (0, 1, 0),
"TE50111": (0, 1, 2),
"TE50112": (2, 1, 2),
"TE50113": (0, 1, 0),
"TE50114": (0, 1, 0),
"TE50115": (1, 1, 0),
"TE50116": (1, 0, 0),
"TE50117": (2, 1, 0),
"TE50118": (2, 1, 1),
"TE50119": (2, 1, 0),
"TE50120": (2, 1, 1),
"TE50121": (0, 1, 0),
"TE50122": (1, 1, 2),
"TE50123": (2, 1, 1),
"TE50124": (1, 0, 2),
"TE50125": (1, 0, 2),
"TE50126": (0, 0, 0),
"TE50127": (0, 1, 0),
"TE50128": (2, 1, 0),
"TE50129": (0, 1, 0),
"TE50130": (1, 1, 0),
"TE50131": (0, 1, 1),
"TE50132": (0, 1, 0),
"TE50133": (2, 0, 2),
"TE50134": (1, 1, 0),
"TE50135": (0, 1, 0),
"TE50136": (0, 1, 2),
"TE50137": (2, 0, 0),
"TE50138": (2, 1, 0),
"TE50139": (0, 1, 0),
"TE50140": (0, 1, 0),
"TE50141": (0, 1, 0),
"TE50142": (2, 1, 2),
"TE50143": (0, 1, 0),
"TE50144": (0, 1, 0),
"TE50145": (1, 0, 2),
"TE50146": (0, 0, 0),
"TE50147": (0, 0, 2),
"TE50148": (2, 0, 2),
"TE50149": (1, 0, 2),
"TE50150": (2, 1, 1),
"TE50151": (2, 0, 2),
"TE50152": (2, 0, 1),
"TE50153": (2, 0, 2),
"TE50154": (2, 0, 2),
"TE50155": (0, 0, 0),
"TE50156": (0, 0, 0),
"TE50157": (0, 1, 2),
"TE50158": (1, 0, 2),
"TE50159": (2, 1, 0),
"TE50160": (2, 1, 0),
"TE50161": (2, 0, 2),
"TE50162": (0, 1, 0),
"TE50163": (0, 1, 0),
"TE50164": (1, 0, 0),
"TE50165": (0, 1, 0),
"TE50166": (2, 0, 2),
"TE50167": (0, 1, 2),
"TE50168": (0, 1, 0),
"TE50169": (0, 1, 0),
"TE50170": (1, 1, 0),
"TE50171": (2, 1, 2),
"TE50172": (2, 1, 2),
"TE50173": (0, 1, 0),
"TE50174": (2, 1, 0),
"TE50175": (0, 1, 0),
"TE50176": (2, 0, 2),
"TE50177": (2, 0, 2),
"TE50178": (1, 1, 0),
"TE50179": (1, 0, 1),
"TE50180": (0, 1, 0),
"TE50181": (0, 1, 0),
"TE50182": (1, 1, 0),
"TE50183": (2, 1, 1),
"TE50184": (0, 1, 0),
"TE50185": (1, 1, 0),
"TE50186": (2, 0, 2),
"TE50187": (0, 1, 0),
"TE50188": (0, 1, 1),
"TE50189": (2, 0, 2),
"TE50190": (1, 1, 0),
"TE50191": (0, 1, 0),
"TE50192": (0, 0, 1),
"TE50193": (1, 1, 0),
"TE50194": (2, 1, 0),
"TE50195": (2, 0, 2),
"TE50196": (0, 1, 0),
"TE50197": (0, 0, 1),
"TE50198": (0, 1, 0),
"TE50199": (0, 1, 0),
"TE50200": (0, 1, 0),
"TE50201": (0, 1, 0),
"TE50202": (0, 1, 0),
"TE50203": (0, 1, 0),
"TE50204": (2, 1, 2),
"TE50205": (2, 0, 1),
"TE50206": (1, 1, 1),
"TE50207": (2, 0, 0),
"TE50208": (0, 1, 0),
"TE50209": (2, 0, 2),
"TE50210": (0, 1, 0),
"TE50211": (0, 1, 0),
"TE50212": (0, 1, 0),
"TE50213": (0, 1, 0),
"TE50214": (0, 1, 0),
"TE50215": (0, 1, 0),
"TE50216": (0, 1, 0),
"TE50217": (0, 1, 0),
"TE50218": (2, 0, 1),
"TE50219": (2, 1, 0),
"TE50220": (2, 1, 0),
"TE50221": (1, 1, 2),
"TE50222": (0, 1, 0),
"TE50223": (0, 1, 1),
"TE50224": (0, 1, 0),
"TE50225": (0, 1, 0),
"TE50226": (0, 1, 0),
"TE50227": (0, 1, 0),
"TE50228": (0, 1, 0),
"TE50229": (0, 1, 0),
"TE50230": (0, 1, 0),
"TE50231": (0, 1, 0),
"TE50232": (0, 1, 1),
"TE50233": (1, 1, 2),
"TE50234": (0, 1, 0),
"TE50235": (0, 1, 0),
"TE50236": (0, 1, 0),
"TE50237": (0, 1, 0),
"TE50238": (0, 0, 2),
"TE50239": (0, 1, 0),
"TE50240": (0, 1, 0),
"TE50241": (0, 1, 0),
"TE50242": (0, 1, 0),
"TE50243": (0, 1, 0),
"TE50244": (0, 1, 0),
"TE50245": (0, 1, 0),
"TE50246": (0, 1, 0),
"TE50247": (0, 1, 0),
"TE50248": (0, 1, 0),
"TE50249": (0, 1, 0),
"TE50250": (2, 0, 1),
"TE50251": (2, 0, 1),
"TE50252": (0, 1, 0),
"TE50253": (0, 1, 0),
"TE50254": (0, 1, 0),
"TE50255": (0, 1, 0),
"TE50256": (0, 1, 0),
"TE50257": (0, 1, 0),
"TE50258": (0, 1, 0),
"TE50259": (0, 1, 0),
"TE50260": (0, 1, 0),
"TE50261": (0, 1, 0),
"TE50262": (0, 1, 0),
"TE50263": (0, 1, 0),
"TE50264": (0, 1, 0),
"TE50265": (0, 1, 0),
"TE50266": (0, 1, 0),
"TE50267": (0, 1, 0),
"TE50268": (0, 1, 0),
"TE50269": (0, 1, 0),
"TE50270": (0, 1, 0),
"TE50271": (0, 1, 0),
"TE50272": (0, 1, 0),
"TE50273": (0, 1, 0),
"TE50274": (0, 1, 0),
"TE50275": (0, 1, 0),
"TE50276": (0, 1, 0),
"TE50277": (0, 1, 0),
"TE50278": (0, 1, 0),
"TE50279": (0, 1, 0),
"TE50280": (0, 1, 0),
"TE50281": (0, 1, 0),
"TE50282": (0, 1, 0),
"TE50283": (0, 1, 0),
"TE50284": (0, 1, 0),
"TE50285": (0, 1, 0),
"TE50286": (0, 1, 0),
"TE50287": (0, 1, 0),
"TE50288": (0, 1, 0),
"TE50289": (0, 1, 0),
"TE50290": (0, 1, 0),
"TE50291": (0, 1, 0),
"TE50292": (0, 1, 0),
"TE50293": (0, 1, 0),
"TE50294": (0, 1, 0),
"TE50295": (0, 1, 0),
"TE50296": (0, 1, 0),
"TE50297": (0, 1, 0),
"TE50298": (0, 1, 0),
"TE50299": (0, 1, 0),
"TE50300": (0, 1, 0),
"TE50301": (0, 1, 0),
"TE50302": (0, 1, 0),
"TE50303": (0, 1, 0),
"TE50304": (0, 1, 0),
"TE50305": (0, 1, 0),
"TE50306": (0, 1, 0),
"TE50307": (0, 1, 0),
"TE50308": (0, 1, 0),
"TE50309": (0, 1, 0),
"TE50310": (0, 1, 0),
"TE50311": (0, 1, 0),
"TE50312": (0, 1, 0),
"TE50313": (0, 1, 0),
"TE50314": (0, 1, 0),
"TE50315": (0, 1, 0),
"TE50316": (0, 1, 0),
"TE50317": (0, 1, 0),
"TE50318": (0, 1, 0),
"TE50319": (0, 1, 0),
"TE50320": (0, 1, 0),
"TE50321": (0, 1, 0),
"TE50322": (0, 1, 0),
"TE50323": (0, 1, 0),
"TE50324": (0, 1, 0),
"TE50325": (0, 1, 0),
"TE50326": (0, 1, 0),
"TE50327": (0, 1, 0),
"TE50328": (2, 0, 2),
"TE50329": (0, 1, 0),
"TE50330": (0, 1, 0),
"TE50331": (0, 1, 0),
"TE50332": (0, 1, 0),
"TE50333": (0, 1, 0),
"TE50334": (0, 1, 0),
"TE50335": (0, 1, 1),
"TE50336": (0, 1, 1),
"TE50337": (0, 1, 0),
"TE50338": (0, 1, 0),
"TE50339": (0, 1, 0),
"TE50340": (0, 1, 0),
"TE50341": (0, 1, 0),
"TE50342": (0, 1, 0),
"TE50343": (0, 1, 0),
"TE50344": (0, 1, 0),
"TE50345": (0, 1, 0),
"TE50346": (0, 1, 0),
"TE50346": (0, 1, 0),
"TE50347": (0, 1, 0),
"TE50348": (0, 1, 0),
"TE50349": (0, 1, 0),
"TE50350": (0, 1, 0),
"TE50351": (0, 1, 0),
"TE50352": (0, 1, 0),
"TE50353": (0, 1, 0)
}
# Load and preprocess data
def load_data():
df = pd.read_csv("data (3).csv", skiprows=2, header=None)
header_df = pd.read_csv("data (3).csv", nrows=2, header=None)
column_names = ['PN', 'Dummy_Project'] + [
f"{header_df.iloc[0, i]}_{header_df.iloc[1, i]}" for i in range(2, len(header_df.columns))
]
df.columns = column_names
id_vars = ['PN', 'Dummy_Project']
value_vars = column_names[2:]
df_long = df.melt(
id_vars=id_vars,
value_vars=value_vars,
var_name='Time_Period',
value_name='y'
)
df_long[['Year', 'Month']] = df_long['Time_Period'].str.split('_', expand=True)
df_long.drop(columns=['Time_Period'], inplace=True)
df_long['Year'] = df_long['Year'].astype(int)
df_long['Month'] = df_long['Month'].astype(str)
df_long['Date'] = pd.to_datetime(
df_long['Year'].astype(str) + '-' + df_long['Month'] + '-01',
format='%Y-%b-%d',
errors='coerce'
)
df_long.dropna(subset=['y'], inplace=True)
df_long.reset_index(drop=True, inplace=True)
return df_long
# Get available part numbers
def get_part_numbers(df):
return df['PN'].unique().tolist()
# Train ARIMA model and make predictions
def train_arima(series, order=(5,1,0)):
model = ARIMA(series, order=order)
model_fit = model.fit()
forecast = model_fit.forecast(steps=10)
return model_fit, forecast
# Create plot
def create_plot(historical, forecast, freq='M'):
plt.figure(figsize=(14, 7))
plt.plot(historical.index, historical, label='Historical', linewidth=2)
forecast_index = pd.date_range(
start=historical.index[-1] + pd.tseries.frequencies.to_offset(freq),
periods=len(forecast),
freq=freq
)
plt.plot(forecast_index, forecast, label='Forecast', color='orange', linewidth=2)
plt.legend(fontsize=12)
plt.title('Time Series Forecast', fontsize=16)
plt.xlabel('Time Period', fontsize=14)
plt.ylabel('Value', fontsize=14)
plt.grid(True, alpha=0.3)
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches="tight")
buf.seek(0)
img_str = base64.b64encode(buf.read()).decode('utf-8')
buf.close()
plt.close()
return f'<img src="data:image/png;base64,{img_str}" style="width:100%; height:auto;" />'
# Main prediction function
def predict(part_number, model_name):
df = load_data()
df_part = df[df['PN'] == part_number].copy()
# Prepare time series
start_date = '2021-10-09'
date_range = pd.date_range(start=start_date, periods=len(df_part), freq='W')
df_part['Date'] = date_range
df_part.set_index('Date', inplace=True)
series = df_part['y'].astype(float)
freq = pd.infer_freq(series.index) or 'M'
# βœ… Choose ARIMA order from mapping (fallback = (5,1,0))
order = BEST_ARIMA_PARAMS.get(part_number, (5,1,0))
if model_name == 'ARIMA':
model, forecast = train_arima(series, order=order)
plot_html = create_plot(series, forecast, freq=freq)
# Evaluate
train_size = int(len(series) * 0.8)
train, test = series[:train_size], series[train_size:]
model_eval = ARIMA(train, order=order)
model_fit_eval = model_eval.fit()
predictions = model_fit_eval.forecast(steps=len(test))
rmse = np.sqrt(mean_squared_error(test, predictions))
mae = mean_absolute_error(test, predictions)
metrics = f"""
Best ARIMA Order for {part_number}: {order}
Model Performance Metrics:
- RMSE: {rmse:.2f}
- MAE: {mae:.2f}
Forecast for next 10 periods:
{', '.join([f'{x:.2f}' for x in forecast])}
"""
return metrics, plot_html
# Create Gradio interface
def create_interface():
df = load_data()
part_numbers = get_part_numbers(df)
with gr.Blocks() as demo:
gr.Markdown("# Time Series Forecasting Dashboard")
with gr.Row():
part_dropdown = gr.Dropdown(choices=part_numbers, label="Select Part Number")
model_dropdown = gr.Dropdown(choices=['ARIMA'], label="Select Model")
predict_btn = gr.Button("Predict")
with gr.Row():
metrics_output = gr.Textbox(label="Metrics and Forecast")
plot_output = gr.HTML(label="Forecast Plot")
predict_btn.click(
fn=predict,
inputs=[part_dropdown, model_dropdown],
outputs=[metrics_output, plot_output]
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch()