Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,355 @@ import matplotlib.pyplot as plt
|
|
7 |
import io
|
8 |
import base64
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
# Load and preprocess data
|
11 |
def load_data():
|
12 |
df = pd.read_csv("data (3).csv", skiprows=2, header=None)
|
@@ -54,13 +403,11 @@ def train_arima(series, order=(5,1,0)):
|
|
54 |
forecast = model_fit.forecast(steps=10)
|
55 |
return model_fit, forecast
|
56 |
|
57 |
-
# Create plot
|
58 |
# Create plot
|
59 |
def create_plot(historical, forecast, freq='M'):
|
60 |
-
plt.figure(figsize=(14, 7))
|
61 |
plt.plot(historical.index, historical, label='Historical', linewidth=2)
|
62 |
|
63 |
-
# Generate forecast index
|
64 |
forecast_index = pd.date_range(
|
65 |
start=historical.index[-1] + pd.tseries.frequencies.to_offset(freq),
|
66 |
periods=len(forecast),
|
@@ -74,7 +421,6 @@ def create_plot(historical, forecast, freq='M'):
|
|
74 |
plt.ylabel('Value', fontsize=14)
|
75 |
plt.grid(True, alpha=0.3)
|
76 |
|
77 |
-
# Convert plot to base64 for Gradio
|
78 |
buf = io.BytesIO()
|
79 |
plt.savefig(buf, format='png', bbox_inches="tight")
|
80 |
buf.seek(0)
|
@@ -82,45 +428,44 @@ def create_plot(historical, forecast, freq='M'):
|
|
82 |
buf.close()
|
83 |
plt.close()
|
84 |
|
85 |
-
# Force full width in Gradio
|
86 |
return f'<img src="data:image/png;base64,{img_str}" style="width:100%; height:auto;" />'
|
87 |
|
88 |
-
|
89 |
# Main prediction function
|
90 |
def predict(part_number, model_name):
|
91 |
df = load_data()
|
92 |
df_part = df[df['PN'] == part_number].copy()
|
93 |
|
94 |
-
# Prepare time series
|
95 |
start_date = '2021-10-09'
|
96 |
date_range = pd.date_range(start=start_date, periods=len(df_part), freq='W')
|
97 |
df_part['Date'] = date_range
|
98 |
df_part.set_index('Date', inplace=True)
|
99 |
series = df_part['y'].astype(float)
|
100 |
|
101 |
-
# Detect frequency automatically
|
102 |
freq = pd.infer_freq(series.index) or 'M'
|
103 |
|
|
|
|
|
|
|
104 |
if model_name == 'ARIMA':
|
105 |
-
model, forecast = train_arima(series)
|
106 |
|
107 |
plot_html = create_plot(series, forecast, freq=freq)
|
108 |
|
109 |
-
|
110 |
-
# Calculate metrics
|
111 |
train_size = int(len(series) * 0.8)
|
112 |
train, test = series[:train_size], series[train_size:]
|
113 |
|
114 |
-
model_eval = ARIMA(train, order=
|
115 |
model_fit_eval = model_eval.fit()
|
116 |
predictions = model_fit_eval.forecast(steps=len(test))
|
117 |
|
118 |
rmse = np.sqrt(mean_squared_error(test, predictions))
|
119 |
mae = mean_absolute_error(test, predictions)
|
120 |
|
121 |
-
plot_html = create_plot(series, forecast)
|
122 |
-
|
123 |
metrics = f"""
|
|
|
|
|
124 |
Model Performance Metrics:
|
125 |
- RMSE: {rmse:.2f}
|
126 |
- MAE: {mae:.2f}
|
@@ -159,4 +504,4 @@ def create_interface():
|
|
159 |
|
160 |
if __name__ == "__main__":
|
161 |
demo = create_interface()
|
162 |
-
demo.launch()
|
|
|
7 |
import io
|
8 |
import base64
|
9 |
|
10 |
+
# ✅ Mapping of best ARIMA orders per part number
|
11 |
+
# (replace with your actual best parameters from the notebook)
|
12 |
+
BEST_ARIMA_PARAMS = {
|
13 |
+
"TE50011": (2, 0, 1),
|
14 |
+
"TE50012": (2, 1, 1),
|
15 |
+
"TE50013": (1, 1, 1),
|
16 |
+
"TE50014": (0, 0, 0),
|
17 |
+
"TE50015": (0, 1, 0),
|
18 |
+
"TE50016": (0, 1, 1),
|
19 |
+
"TE50017": (2, 1, 0),
|
20 |
+
"TE50018": (1, 1, 2),
|
21 |
+
"TE50019": (2, 1, 0),
|
22 |
+
"TE50020": (2, 1, 1),
|
23 |
+
"TE50021": (0, 0, 0),
|
24 |
+
"TE50022": (2, 1, 2),
|
25 |
+
"TE50023": (1, 0, 0),
|
26 |
+
"TE50024": (1, 1, 2),
|
27 |
+
"TE50025": (1, 1, 0),
|
28 |
+
"TE50026": (2, 0, 0),
|
29 |
+
"TE50027": (0, 0, 2),
|
30 |
+
"TE50028": (1, 0, 1),
|
31 |
+
"TE50029": (0, 1, 0),
|
32 |
+
"TE50030": (0, 1, 0),
|
33 |
+
"TE50031": (1, 1, 0),
|
34 |
+
"TE50032": (1, 1, 0),
|
35 |
+
"TE50033": (2, 1, 1),
|
36 |
+
"TE50034": (0, 0, 0),
|
37 |
+
"TE50035": (2, 1, 0),
|
38 |
+
"TE50036": (0, 1, 0),
|
39 |
+
"TE50037": (0, 0, 2),
|
40 |
+
"TE50038": (2, 1, 1),
|
41 |
+
"TE50039": (2, 0, 1),
|
42 |
+
"TE50040": (1, 1, 1),
|
43 |
+
"TE50041": (1, 1, 0),
|
44 |
+
"TE50042": (0, 1, 0),
|
45 |
+
"TE50043": (2, 1, 0),
|
46 |
+
"TE50044": (0, 1, 0),
|
47 |
+
"TE50045": (1, 0, 0),
|
48 |
+
"TE50046": (0, 1, 0),
|
49 |
+
"TE50047": (1, 1, 2),
|
50 |
+
"TE50048": (0, 1, 0),
|
51 |
+
"TE50049": (2, 1, 2),
|
52 |
+
"TE50050": (2, 0, 2),
|
53 |
+
"TE50051": (0, 1, 0),
|
54 |
+
"TE50052": (2, 0, 1),
|
55 |
+
"TE50053": (1, 0, 2),
|
56 |
+
"TE50054": (1, 1, 0),
|
57 |
+
"TE50055": (0, 0, 0),
|
58 |
+
"TE50056": (2, 0, 2),
|
59 |
+
"TE50057": (0, 1, 0),
|
60 |
+
"TE50058": (1, 1, 0),
|
61 |
+
"TE50059": (0, 1, 0),
|
62 |
+
"TE50060": (1, 1, 2),
|
63 |
+
"TE50061": (2, 1, 0),
|
64 |
+
"TE50062": (1, 1, 2),
|
65 |
+
"TE50063": (0, 0, 2),
|
66 |
+
"TE50064": (0, 1, 0),
|
67 |
+
"TE50065": (0, 1, 0),
|
68 |
+
"TE50066": (2, 1, 0),
|
69 |
+
"TE50067": (2, 1, 0),
|
70 |
+
"TE50068": (1, 1, 0),
|
71 |
+
"TE50069": (0, 1, 2),
|
72 |
+
"TE50070": (1, 1, 1),
|
73 |
+
"TE50071": (2, 1, 2),
|
74 |
+
"TE50072": (2, 0, 2),
|
75 |
+
"TE50073": (2, 0, 1),
|
76 |
+
"TE50074": (0, 1, 1),
|
77 |
+
"TE50075": (2, 1, 0),
|
78 |
+
"TE50076": (0, 1, 0),
|
79 |
+
"TE50077": (0, 1, 2),
|
80 |
+
"TE50078": (2, 1, 0),
|
81 |
+
"TE50079": (0, 1, 0),
|
82 |
+
"TE50080": (2, 1, 2),
|
83 |
+
"TE50081": (2, 1, 0),
|
84 |
+
"TE50082": (0, 1, 0),
|
85 |
+
"TE50083": (2, 1, 0),
|
86 |
+
"TE50084": (0, 1, 0),
|
87 |
+
"TE50085": (2, 1, 0),
|
88 |
+
"TE50086": (0, 1, 1),
|
89 |
+
"TE50087": (2, 0, 1),
|
90 |
+
"TE50088": (2, 1, 0),
|
91 |
+
"TE50089": (2, 0, 2),
|
92 |
+
"TE50090": (0, 1, 1),
|
93 |
+
"TE50091": (0, 1, 0),
|
94 |
+
"TE50092": (0, 1, 0),
|
95 |
+
"TE50093": (2, 0, 2),
|
96 |
+
"TE50094": (2, 0, 1),
|
97 |
+
"TE50095": (1, 0, 0),
|
98 |
+
"TE50096": (0, 1, 0),
|
99 |
+
"TE50097": (0, 1, 0),
|
100 |
+
"TE50098": (1, 1, 0),
|
101 |
+
"TE50099": (0, 1, 0),
|
102 |
+
"TE50100": (2, 0, 2),
|
103 |
+
"TE50101": (2, 0, 2),
|
104 |
+
"TE50102": (1, 1, 1),
|
105 |
+
"TE50103": (0, 0, 1),
|
106 |
+
"TE50104": (0, 1, 0),
|
107 |
+
"TE50105": (2, 0, 0),
|
108 |
+
"TE50106": (2, 0, 0),
|
109 |
+
"TE50107": (2, 0, 0),
|
110 |
+
"TE50108": (2, 1, 0),
|
111 |
+
"TE50109": (2, 1, 0),
|
112 |
+
"TE50110": (0, 1, 0),
|
113 |
+
"TE50111": (0, 1, 2),
|
114 |
+
"TE50112": (2, 1, 2),
|
115 |
+
"TE50113": (0, 1, 0),
|
116 |
+
"TE50114": (0, 1, 0),
|
117 |
+
"TE50115": (1, 1, 0),
|
118 |
+
"TE50116": (1, 0, 0),
|
119 |
+
"TE50117": (2, 1, 0),
|
120 |
+
"TE50118": (2, 1, 1),
|
121 |
+
"TE50119": (2, 1, 0),
|
122 |
+
"TE50120": (2, 1, 1),
|
123 |
+
"TE50121": (0, 1, 0),
|
124 |
+
"TE50122": (1, 1, 2),
|
125 |
+
"TE50123": (2, 1, 1),
|
126 |
+
"TE50124": (1, 0, 2),
|
127 |
+
"TE50125": (1, 0, 2),
|
128 |
+
"TE50126": (0, 0, 0),
|
129 |
+
"TE50127": (0, 1, 0),
|
130 |
+
"TE50128": (2, 1, 0),
|
131 |
+
"TE50129": (0, 1, 0),
|
132 |
+
"TE50130": (1, 1, 0),
|
133 |
+
"TE50131": (0, 1, 1),
|
134 |
+
"TE50132": (0, 1, 0),
|
135 |
+
"TE50133": (2, 0, 2),
|
136 |
+
"TE50134": (1, 1, 0),
|
137 |
+
"TE50135": (0, 1, 0),
|
138 |
+
"TE50136": (0, 1, 2),
|
139 |
+
"TE50137": (2, 0, 0),
|
140 |
+
"TE50138": (2, 1, 0),
|
141 |
+
"TE50139": (0, 1, 0),
|
142 |
+
"TE50140": (0, 1, 0),
|
143 |
+
"TE50141": (0, 1, 0),
|
144 |
+
"TE50142": (2, 1, 2),
|
145 |
+
"TE50143": (0, 1, 0),
|
146 |
+
"TE50144": (0, 1, 0),
|
147 |
+
"TE50145": (1, 0, 2),
|
148 |
+
"TE50146": (0, 0, 0),
|
149 |
+
"TE50147": (0, 0, 2),
|
150 |
+
"TE50148": (2, 0, 2),
|
151 |
+
"TE50149": (1, 0, 2),
|
152 |
+
"TE50150": (2, 1, 1),
|
153 |
+
"TE50151": (2, 0, 2),
|
154 |
+
"TE50152": (2, 0, 1),
|
155 |
+
"TE50153": (2, 0, 2),
|
156 |
+
"TE50154": (2, 0, 2),
|
157 |
+
"TE50155": (0, 0, 0),
|
158 |
+
"TE50156": (0, 0, 0),
|
159 |
+
"TE50157": (0, 1, 2),
|
160 |
+
"TE50158": (1, 0, 2),
|
161 |
+
"TE50159": (2, 1, 0),
|
162 |
+
"TE50160": (2, 1, 0),
|
163 |
+
"TE50161": (2, 0, 2),
|
164 |
+
"TE50162": (0, 1, 0),
|
165 |
+
"TE50163": (0, 1, 0),
|
166 |
+
"TE50164": (1, 0, 0),
|
167 |
+
"TE50165": (0, 1, 0),
|
168 |
+
"TE50166": (2, 0, 2),
|
169 |
+
"TE50167": (0, 1, 2),
|
170 |
+
"TE50168": (0, 1, 0),
|
171 |
+
"TE50169": (0, 1, 0),
|
172 |
+
"TE50170": (1, 1, 0),
|
173 |
+
"TE50171": (2, 1, 2),
|
174 |
+
"TE50172": (2, 1, 2),
|
175 |
+
"TE50173": (0, 1, 0),
|
176 |
+
"TE50174": (2, 1, 0),
|
177 |
+
"TE50175": (0, 1, 0),
|
178 |
+
"TE50176": (2, 0, 2),
|
179 |
+
"TE50177": (2, 0, 2),
|
180 |
+
"TE50178": (1, 1, 0),
|
181 |
+
"TE50179": (1, 0, 1),
|
182 |
+
"TE50180": (0, 1, 0),
|
183 |
+
"TE50181": (0, 1, 0),
|
184 |
+
"TE50182": (1, 1, 0),
|
185 |
+
"TE50183": (2, 1, 1),
|
186 |
+
"TE50184": (0, 1, 0),
|
187 |
+
"TE50185": (1, 1, 0),
|
188 |
+
"TE50186": (2, 0, 2),
|
189 |
+
"TE50187": (0, 1, 0),
|
190 |
+
"TE50188": (0, 1, 1),
|
191 |
+
"TE50189": (2, 0, 2),
|
192 |
+
"TE50190": (1, 1, 0),
|
193 |
+
"TE50191": (0, 1, 0),
|
194 |
+
"TE50192": (0, 0, 1),
|
195 |
+
"TE50193": (1, 1, 0),
|
196 |
+
"TE50194": (2, 1, 0),
|
197 |
+
"TE50195": (2, 0, 2),
|
198 |
+
"TE50196": (0, 1, 0),
|
199 |
+
"TE50197": (0, 0, 1),
|
200 |
+
"TE50198": (0, 1, 0),
|
201 |
+
"TE50199": (0, 1, 0),
|
202 |
+
"TE50200": (0, 1, 0),
|
203 |
+
"TE50201": (0, 1, 0),
|
204 |
+
"TE50202": (0, 1, 0),
|
205 |
+
"TE50203": (0, 1, 0),
|
206 |
+
"TE50204": (2, 1, 2),
|
207 |
+
"TE50205": (2, 0, 1),
|
208 |
+
"TE50206": (1, 1, 1),
|
209 |
+
"TE50207": (2, 0, 0),
|
210 |
+
"TE50208": (0, 1, 0),
|
211 |
+
"TE50209": (2, 0, 2),
|
212 |
+
"TE50210": (0, 1, 0),
|
213 |
+
"TE50211": (0, 1, 0),
|
214 |
+
"TE50212": (0, 1, 0),
|
215 |
+
"TE50213": (0, 1, 0),
|
216 |
+
"TE50214": (0, 1, 0),
|
217 |
+
"TE50215": (0, 1, 0),
|
218 |
+
"TE50216": (0, 1, 0),
|
219 |
+
"TE50217": (0, 1, 0),
|
220 |
+
"TE50218": (2, 0, 1),
|
221 |
+
"TE50219": (2, 1, 0),
|
222 |
+
"TE50220": (2, 1, 0),
|
223 |
+
"TE50221": (1, 1, 2),
|
224 |
+
"TE50222": (0, 1, 0),
|
225 |
+
"TE50223": (0, 1, 1),
|
226 |
+
"TE50224": (0, 1, 0),
|
227 |
+
"TE50225": (0, 1, 0),
|
228 |
+
"TE50226": (0, 1, 0),
|
229 |
+
"TE50227": (0, 1, 0),
|
230 |
+
"TE50228": (0, 1, 0),
|
231 |
+
"TE50229": (0, 1, 0),
|
232 |
+
"TE50230": (0, 1, 0),
|
233 |
+
"TE50231": (0, 1, 0),
|
234 |
+
"TE50232": (0, 1, 1),
|
235 |
+
"TE50233": (1, 1, 2),
|
236 |
+
"TE50234": (0, 1, 0),
|
237 |
+
"TE50235": (0, 1, 0),
|
238 |
+
"TE50236": (0, 1, 0),
|
239 |
+
"TE50237": (0, 1, 0),
|
240 |
+
"TE50238": (0, 0, 2),
|
241 |
+
"TE50239": (0, 1, 0),
|
242 |
+
"TE50240": (0, 1, 0),
|
243 |
+
"TE50241": (0, 1, 0),
|
244 |
+
"TE50242": (0, 1, 0),
|
245 |
+
"TE50243": (0, 1, 0),
|
246 |
+
"TE50244": (0, 1, 0),
|
247 |
+
"TE50245": (0, 1, 0),
|
248 |
+
"TE50246": (0, 1, 0),
|
249 |
+
"TE50247": (0, 1, 0),
|
250 |
+
"TE50248": (0, 1, 0),
|
251 |
+
"TE50249": (0, 1, 0),
|
252 |
+
"TE50250": (2, 0, 1),
|
253 |
+
"TE50251": (2, 0, 1),
|
254 |
+
"TE50252": (0, 1, 0),
|
255 |
+
"TE50253": (0, 1, 0),
|
256 |
+
"TE50254": (0, 1, 0),
|
257 |
+
"TE50255": (0, 1, 0),
|
258 |
+
"TE50256": (0, 1, 0),
|
259 |
+
"TE50257": (0, 1, 0),
|
260 |
+
"TE50258": (0, 1, 0),
|
261 |
+
"TE50259": (0, 1, 0),
|
262 |
+
"TE50260": (0, 1, 0),
|
263 |
+
"TE50261": (0, 1, 0),
|
264 |
+
"TE50262": (0, 1, 0),
|
265 |
+
"TE50263": (0, 1, 0),
|
266 |
+
"TE50264": (0, 1, 0),
|
267 |
+
"TE50265": (0, 1, 0),
|
268 |
+
"TE50266": (0, 1, 0),
|
269 |
+
"TE50267": (0, 1, 0),
|
270 |
+
"TE50268": (0, 1, 0),
|
271 |
+
"TE50269": (0, 1, 0),
|
272 |
+
"TE50270": (0, 1, 0),
|
273 |
+
"TE50271": (0, 1, 0),
|
274 |
+
"TE50272": (0, 1, 0),
|
275 |
+
"TE50273": (0, 1, 0),
|
276 |
+
"TE50274": (0, 1, 0),
|
277 |
+
"TE50275": (0, 1, 0),
|
278 |
+
"TE50276": (0, 1, 0),
|
279 |
+
"TE50277": (0, 1, 0),
|
280 |
+
"TE50278": (0, 1, 0),
|
281 |
+
"TE50279": (0, 1, 0),
|
282 |
+
"TE50280": (0, 1, 0),
|
283 |
+
"TE50281": (0, 1, 0),
|
284 |
+
"TE50282": (0, 1, 0),
|
285 |
+
"TE50283": (0, 1, 0),
|
286 |
+
"TE50284": (0, 1, 0),
|
287 |
+
"TE50285": (0, 1, 0),
|
288 |
+
"TE50286": (0, 1, 0),
|
289 |
+
"TE50287": (0, 1, 0),
|
290 |
+
"TE50288": (0, 1, 0),
|
291 |
+
"TE50289": (0, 1, 0),
|
292 |
+
"TE50290": (0, 1, 0),
|
293 |
+
"TE50291": (0, 1, 0),
|
294 |
+
"TE50292": (0, 1, 0),
|
295 |
+
"TE50293": (0, 1, 0),
|
296 |
+
"TE50294": (0, 1, 0),
|
297 |
+
"TE50295": (0, 1, 0),
|
298 |
+
"TE50296": (0, 1, 0),
|
299 |
+
"TE50297": (0, 1, 0),
|
300 |
+
"TE50298": (0, 1, 0),
|
301 |
+
"TE50299": (0, 1, 0),
|
302 |
+
"TE50300": (0, 1, 0),
|
303 |
+
"TE50301": (0, 1, 0),
|
304 |
+
"TE50302": (0, 1, 0),
|
305 |
+
"TE50303": (0, 1, 0),
|
306 |
+
"TE50304": (0, 1, 0),
|
307 |
+
"TE50305": (0, 1, 0),
|
308 |
+
"TE50306": (0, 1, 0),
|
309 |
+
"TE50307": (0, 1, 0),
|
310 |
+
"TE50308": (0, 1, 0),
|
311 |
+
"TE50309": (0, 1, 0),
|
312 |
+
"TE50310": (0, 1, 0),
|
313 |
+
"TE50311": (0, 1, 0),
|
314 |
+
"TE50312": (0, 1, 0),
|
315 |
+
"TE50313": (0, 1, 0),
|
316 |
+
"TE50314": (0, 1, 0),
|
317 |
+
"TE50315": (0, 1, 0),
|
318 |
+
"TE50316": (0, 1, 0),
|
319 |
+
"TE50317": (0, 1, 0),
|
320 |
+
"TE50318": (0, 1, 0),
|
321 |
+
"TE50319": (0, 1, 0),
|
322 |
+
"TE50320": (0, 1, 0),
|
323 |
+
"TE50321": (0, 1, 0),
|
324 |
+
"TE50322": (0, 1, 0),
|
325 |
+
"TE50323": (0, 1, 0),
|
326 |
+
"TE50324": (0, 1, 0),
|
327 |
+
"TE50325": (0, 1, 0),
|
328 |
+
"TE50326": (0, 1, 0),
|
329 |
+
"TE50327": (0, 1, 0),
|
330 |
+
"TE50328": (2, 0, 2),
|
331 |
+
"TE50329": (0, 1, 0),
|
332 |
+
"TE50330": (0, 1, 0),
|
333 |
+
"TE50331": (0, 1, 0),
|
334 |
+
"TE50332": (0, 1, 0),
|
335 |
+
"TE50333": (0, 1, 0),
|
336 |
+
"TE50334": (0, 1, 0),
|
337 |
+
"TE50335": (0, 1, 1),
|
338 |
+
"TE50336": (0, 1, 1),
|
339 |
+
"TE50337": (0, 1, 0),
|
340 |
+
"TE50338": (0, 1, 0),
|
341 |
+
"TE50339": (0, 1, 0),
|
342 |
+
"TE50340": (0, 1, 0),
|
343 |
+
"TE50341": (0, 1, 0),
|
344 |
+
"TE50342": (0, 1, 0),
|
345 |
+
"TE50343": (0, 1, 0),
|
346 |
+
"TE50344": (0, 1, 0),
|
347 |
+
"TE50345": (0, 1, 0),
|
348 |
+
"TE50346": (0, 1, 0),
|
349 |
+
"TE50346": (0, 1, 0),
|
350 |
+
"TE50347": (0, 1, 0),
|
351 |
+
"TE50348": (0, 1, 0),
|
352 |
+
"TE50349": (0, 1, 0),
|
353 |
+
"TE50350": (0, 1, 0),
|
354 |
+
"TE50351": (0, 1, 0),
|
355 |
+
"TE50352": (0, 1, 0),
|
356 |
+
"TE50353": (0, 1, 0)
|
357 |
+
}
|
358 |
+
|
359 |
# Load and preprocess data
|
360 |
def load_data():
|
361 |
df = pd.read_csv("data (3).csv", skiprows=2, header=None)
|
|
|
403 |
forecast = model_fit.forecast(steps=10)
|
404 |
return model_fit, forecast
|
405 |
|
|
|
406 |
# Create plot
|
407 |
def create_plot(historical, forecast, freq='M'):
|
408 |
+
plt.figure(figsize=(14, 7))
|
409 |
plt.plot(historical.index, historical, label='Historical', linewidth=2)
|
410 |
|
|
|
411 |
forecast_index = pd.date_range(
|
412 |
start=historical.index[-1] + pd.tseries.frequencies.to_offset(freq),
|
413 |
periods=len(forecast),
|
|
|
421 |
plt.ylabel('Value', fontsize=14)
|
422 |
plt.grid(True, alpha=0.3)
|
423 |
|
|
|
424 |
buf = io.BytesIO()
|
425 |
plt.savefig(buf, format='png', bbox_inches="tight")
|
426 |
buf.seek(0)
|
|
|
428 |
buf.close()
|
429 |
plt.close()
|
430 |
|
|
|
431 |
return f'<img src="data:image/png;base64,{img_str}" style="width:100%; height:auto;" />'
|
432 |
|
|
|
433 |
# Main prediction function
|
434 |
def predict(part_number, model_name):
|
435 |
df = load_data()
|
436 |
df_part = df[df['PN'] == part_number].copy()
|
437 |
|
438 |
+
# Prepare time series
|
439 |
start_date = '2021-10-09'
|
440 |
date_range = pd.date_range(start=start_date, periods=len(df_part), freq='W')
|
441 |
df_part['Date'] = date_range
|
442 |
df_part.set_index('Date', inplace=True)
|
443 |
series = df_part['y'].astype(float)
|
444 |
|
|
|
445 |
freq = pd.infer_freq(series.index) or 'M'
|
446 |
|
447 |
+
# ✅ Choose ARIMA order from mapping (fallback = (5,1,0))
|
448 |
+
order = BEST_ARIMA_PARAMS.get(part_number, (5,1,0))
|
449 |
+
|
450 |
if model_name == 'ARIMA':
|
451 |
+
model, forecast = train_arima(series, order=order)
|
452 |
|
453 |
plot_html = create_plot(series, forecast, freq=freq)
|
454 |
|
455 |
+
# Evaluate
|
|
|
456 |
train_size = int(len(series) * 0.8)
|
457 |
train, test = series[:train_size], series[train_size:]
|
458 |
|
459 |
+
model_eval = ARIMA(train, order=order)
|
460 |
model_fit_eval = model_eval.fit()
|
461 |
predictions = model_fit_eval.forecast(steps=len(test))
|
462 |
|
463 |
rmse = np.sqrt(mean_squared_error(test, predictions))
|
464 |
mae = mean_absolute_error(test, predictions)
|
465 |
|
|
|
|
|
466 |
metrics = f"""
|
467 |
+
Best ARIMA Order for {part_number}: {order}
|
468 |
+
|
469 |
Model Performance Metrics:
|
470 |
- RMSE: {rmse:.2f}
|
471 |
- MAE: {mae:.2f}
|
|
|
504 |
|
505 |
if __name__ == "__main__":
|
506 |
demo = create_interface()
|
507 |
+
demo.launch()
|