Spaces:
No application file
No application file
import pandas as pd | |
import torch | |
from torch import nn | |
from torch.utils.data import Dataset, DataLoader | |
from transformers import RobertaTokenizer, RobertaModel | |
from sklearn.model_selection import train_test_split | |
from sklearn.metrics import accuracy_score, precision_recall_fscore_support | |
from tqdm import tqdm | |
import argparse | |
# 1. Dataset Class | |
class DepressionDataset(Dataset): | |
def __init__(self, df, tokenizer, max_length=256): | |
self.texts = df['clean_text'].values | |
self.labels = df['is_depression'].values | |
self.tokenizer = tokenizer | |
self.max_length = max_length | |
def __len__(self): | |
return len(self.texts) | |
def __getitem__(self, idx): | |
text = str(self.texts[idx]) | |
label = self.labels[idx] | |
encoding = self.tokenizer.encode_plus( | |
text, | |
add_special_tokens=True, | |
max_length=self.max_length, | |
padding='max_length', | |
truncation=True, | |
return_attention_mask=True, | |
return_tensors='pt' | |
) | |
return { | |
'input_ids': encoding['input_ids'].flatten(), | |
'attention_mask': encoding['attention_mask'].flatten(), | |
'label': torch.tensor(label, dtype=torch.long) | |
} | |
# 2. Model Class | |
class DepressionClassifier(nn.Module): | |
def __init__(self, dropout_rate=0.1): | |
super(DepressionClassifier, self).__init__() | |
self.roberta = RobertaModel.from_pretrained('roberta-base') | |
self.dropout = nn.Dropout(dropout_rate) | |
self.classifier = nn.Linear(768, 2) | |
def forward(self, input_ids, attention_mask): | |
outputs = self.roberta( | |
input_ids=input_ids, | |
attention_mask=attention_mask | |
) | |
sequence_output = outputs.last_hidden_state[:, 0, :] | |
sequence_output = self.dropout(sequence_output) | |
logits = self.classifier(sequence_output) | |
return logits | |
# 3. Prepare data loaders | |
def prepare_dataloaders(df, batch_size=16): | |
# Split data | |
train_df, temp_df = train_test_split(df, test_size=0.3, stratify=df['is_depression'], random_state=42) | |
val_df, test_df = train_test_split(temp_df, test_size=0.5, stratify=temp_df['is_depression'], random_state=42) | |
# Initialize tokenizer | |
tokenizer = RobertaTokenizer.from_pretrained('roberta-base') | |
# Create datasets | |
train_dataset = DepressionDataset(train_df, tokenizer) | |
val_dataset = DepressionDataset(val_df, tokenizer) | |
test_dataset = DepressionDataset(test_df, tokenizer) | |
# Create dataloaders | |
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) | |
val_loader = DataLoader(val_dataset, batch_size=batch_size) | |
test_loader = DataLoader(test_dataset, batch_size=batch_size) | |
return train_loader, val_loader, test_loader | |
# 4. Training function | |
def train_model(model, train_loader, val_loader, device, epochs=3, learning_rate=2e-5): | |
# Move model to device | |
model = model.to(device) | |
# Initialize optimizer | |
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate) | |
# Initialize loss function | |
loss_fn = nn.CrossEntropyLoss() | |
# Training loop | |
best_accuracy = 0 | |
for epoch in range(epochs): | |
print(f'Epoch {epoch + 1}/{epochs}') | |
# TRAINING | |
model.train() | |
train_loss = 0 | |
train_preds = [] | |
train_labels = [] | |
# Progress bar for training | |
progress_bar = tqdm(train_loader, desc="Training") | |
for batch in progress_bar: | |
# Get batch data | |
input_ids = batch['input_ids'].to(device) | |
attention_mask = batch['attention_mask'].to(device) | |
labels = batch['label'].to(device) | |
# Forward pass | |
optimizer.zero_grad() | |
outputs = model(input_ids, attention_mask) | |
loss = loss_fn(outputs, labels) | |
# Backward pass | |
loss.backward() | |
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0) | |
optimizer.step() | |
# Track metrics | |
train_loss += loss.item() | |
_, preds = torch.max(outputs, dim=1) | |
train_preds.extend(preds.cpu().tolist()) | |
train_labels.extend(labels.cpu().tolist()) | |
# Update progress bar | |
progress_bar.set_postfix({'loss': loss.item()}) | |
# Calculate training metrics | |
avg_train_loss = train_loss / len(train_loader) | |
train_accuracy = accuracy_score(train_labels, train_preds) | |
# VALIDATION | |
model.eval() | |
val_loss = 0 | |
val_preds = [] | |
val_labels = [] | |
with torch.no_grad(): | |
for batch in tqdm(val_loader, desc="Validation"): | |
# Get batch data | |
input_ids = batch['input_ids'].to(device) | |
attention_mask = batch['attention_mask'].to(device) | |
labels = batch['label'].to(device) | |
# Forward pass | |
outputs = model(input_ids, attention_mask) | |
loss = loss_fn(outputs, labels) | |
# Track metrics | |
val_loss += loss.item() | |
_, preds = torch.max(outputs, dim=1) | |
val_preds.extend(preds.cpu().tolist()) | |
val_labels.extend(labels.cpu().tolist()) | |
# Calculate validation metrics | |
avg_val_loss = val_loss / len(val_loader) | |
val_accuracy = accuracy_score(val_labels, val_preds) | |
# Print metrics | |
print(f'Train Loss: {avg_train_loss:.4f} | Train Accuracy: {train_accuracy:.4f}') | |
print(f'Val Loss: {avg_val_loss:.4f} | Val Accuracy: {val_accuracy:.4f}') | |
# Save best model | |
if val_accuracy > best_accuracy: | |
torch.save(model.state_dict(), 'best_model.pt') | |
best_accuracy = val_accuracy | |
print(f'New best model saved with accuracy: {val_accuracy:.4f}') | |
print('-' * 50) | |
# Load best model | |
model.load_state_dict(torch.load('best_model.pt')) | |
return model | |
# 5. Evaluation function | |
def evaluate_model(model, test_loader, device): | |
model.eval() | |
test_preds = [] | |
test_labels = [] | |
with torch.no_grad(): | |
for batch in tqdm(test_loader, desc="Testing"): | |
input_ids = batch['input_ids'].to(device) | |
attention_mask = batch['attention_mask'].to(device) | |
labels = batch['label'].to(device) | |
outputs = model(input_ids, attention_mask) | |
_, preds = torch.max(outputs, dim=1) | |
test_preds.extend(preds.cpu().tolist()) | |
test_labels.extend(labels.cpu().tolist()) | |
# Calculate metrics | |
accuracy = accuracy_score(test_labels, test_preds) | |
precision, recall, f1, _ = precision_recall_fscore_support( | |
test_labels, test_preds, average='binary' | |
) | |
return { | |
'accuracy': accuracy, | |
'precision': precision, | |
'recall': recall, | |
'f1': f1 | |
} | |
# 6. Main function | |
def main(): | |
parser = argparse.ArgumentParser(description='Train depression classifier') | |
parser.add_argument('--data_path', type=str, default='depression_dataset_reddit_cleaned_final.csv', | |
help='Path to the cleaned dataset') | |
parser.add_argument('--batch_size', type=int, default=16, help='Batch size for training') | |
parser.add_argument('--epochs', type=int, default=3, help='Number of training epochs') | |
parser.add_argument('--learning_rate', type=float, default=2e-5, help='Learning rate') | |
args = parser.parse_args() | |
# Check for GPU | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
print(f'Using device: {device}') | |
# Load data | |
df = pd.read_csv(args.data_path) | |
print(f'Loaded dataset with {len(df)} examples') | |
# Prepare data | |
train_loader, val_loader, test_loader = prepare_dataloaders( | |
df, batch_size=args.batch_size | |
) | |
print(f'Training samples: {len(train_loader.dataset)}') | |
print(f'Validation samples: {len(val_loader.dataset)}') | |
print(f'Testing samples: {len(test_loader.dataset)}') | |
# Create model | |
model = DepressionClassifier() | |
print('Model created') | |
# Train model | |
print('Starting training...') | |
trained_model = train_model( | |
model, | |
train_loader, | |
val_loader, | |
device, | |
epochs=args.epochs, | |
learning_rate=args.learning_rate | |
) | |
# Evaluate model | |
print('Evaluating model...') | |
metrics = evaluate_model(trained_model, test_loader, device) | |
# Print results | |
print('\nTest Results:') | |
for metric, value in metrics.items(): | |
print(f'{metric}: {value:.4f}') | |
if __name__ == '__main__': | |
main() |