File size: 8,988 Bytes
b4769ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import pandas as pd
import torch
from torch import nn
from torch.utils.data import Dataset, DataLoader
from transformers import RobertaTokenizer, RobertaModel
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
from tqdm import tqdm
import argparse

# 1. Dataset Class
class DepressionDataset(Dataset):
    def __init__(self, df, tokenizer, max_length=256):
        self.texts = df['clean_text'].values
        self.labels = df['is_depression'].values
        self.tokenizer = tokenizer
        self.max_length = max_length
    
    def __len__(self):
        return len(self.texts)
    
    def __getitem__(self, idx):
        text = str(self.texts[idx])
        label = self.labels[idx]
        
        encoding = self.tokenizer.encode_plus(
            text,
            add_special_tokens=True,
            max_length=self.max_length,
            padding='max_length',
            truncation=True,
            return_attention_mask=True,
            return_tensors='pt'
        )
        
        return {
            'input_ids': encoding['input_ids'].flatten(),
            'attention_mask': encoding['attention_mask'].flatten(),
            'label': torch.tensor(label, dtype=torch.long)
        }

# 2. Model Class
class DepressionClassifier(nn.Module):
    def __init__(self, dropout_rate=0.1):
        super(DepressionClassifier, self).__init__()
        self.roberta = RobertaModel.from_pretrained('roberta-base')
        self.dropout = nn.Dropout(dropout_rate)
        self.classifier = nn.Linear(768, 2)
        
    def forward(self, input_ids, attention_mask):
        outputs = self.roberta(
            input_ids=input_ids,
            attention_mask=attention_mask
        )
        
        sequence_output = outputs.last_hidden_state[:, 0, :]
        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)
        
        return logits

# 3. Prepare data loaders
def prepare_dataloaders(df, batch_size=16):
    # Split data
    train_df, temp_df = train_test_split(df, test_size=0.3, stratify=df['is_depression'], random_state=42)
    val_df, test_df = train_test_split(temp_df, test_size=0.5, stratify=temp_df['is_depression'], random_state=42)
    
    # Initialize tokenizer
    tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
    
    # Create datasets
    train_dataset = DepressionDataset(train_df, tokenizer)
    val_dataset = DepressionDataset(val_df, tokenizer)
    test_dataset = DepressionDataset(test_df, tokenizer)
    
    # Create dataloaders
    train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
    val_loader = DataLoader(val_dataset, batch_size=batch_size)
    test_loader = DataLoader(test_dataset, batch_size=batch_size)
    
    return train_loader, val_loader, test_loader

# 4. Training function
def train_model(model, train_loader, val_loader, device, epochs=3, learning_rate=2e-5):
    # Move model to device
    model = model.to(device)
    
    # Initialize optimizer
    optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
    
    # Initialize loss function
    loss_fn = nn.CrossEntropyLoss()
    
    # Training loop
    best_accuracy = 0
    
    for epoch in range(epochs):
        print(f'Epoch {epoch + 1}/{epochs}')
        
        # TRAINING
        model.train()
        train_loss = 0
        train_preds = []
        train_labels = []
        
        # Progress bar for training
        progress_bar = tqdm(train_loader, desc="Training")
        
        for batch in progress_bar:
            # Get batch data
            input_ids = batch['input_ids'].to(device)
            attention_mask = batch['attention_mask'].to(device)
            labels = batch['label'].to(device)
            
            # Forward pass
            optimizer.zero_grad()
            outputs = model(input_ids, attention_mask)
            loss = loss_fn(outputs, labels)
            
            # Backward pass
            loss.backward()
            torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
            optimizer.step()
            
            # Track metrics
            train_loss += loss.item()
            _, preds = torch.max(outputs, dim=1)
            train_preds.extend(preds.cpu().tolist())
            train_labels.extend(labels.cpu().tolist())
            
            # Update progress bar
            progress_bar.set_postfix({'loss': loss.item()})
        
        # Calculate training metrics
        avg_train_loss = train_loss / len(train_loader)
        train_accuracy = accuracy_score(train_labels, train_preds)
        
        # VALIDATION
        model.eval()
        val_loss = 0
        val_preds = []
        val_labels = []
        
        with torch.no_grad():
            for batch in tqdm(val_loader, desc="Validation"):
                # Get batch data
                input_ids = batch['input_ids'].to(device)
                attention_mask = batch['attention_mask'].to(device)
                labels = batch['label'].to(device)
                
                # Forward pass
                outputs = model(input_ids, attention_mask)
                loss = loss_fn(outputs, labels)
                
                # Track metrics
                val_loss += loss.item()
                _, preds = torch.max(outputs, dim=1)
                val_preds.extend(preds.cpu().tolist())
                val_labels.extend(labels.cpu().tolist())
        
        # Calculate validation metrics
        avg_val_loss = val_loss / len(val_loader)
        val_accuracy = accuracy_score(val_labels, val_preds)
        
        # Print metrics
        print(f'Train Loss: {avg_train_loss:.4f} | Train Accuracy: {train_accuracy:.4f}')
        print(f'Val Loss: {avg_val_loss:.4f} | Val Accuracy: {val_accuracy:.4f}')
        
        # Save best model
        if val_accuracy > best_accuracy:
            torch.save(model.state_dict(), 'best_model.pt')
            best_accuracy = val_accuracy
            print(f'New best model saved with accuracy: {val_accuracy:.4f}')
        
        print('-' * 50)
    
    # Load best model
    model.load_state_dict(torch.load('best_model.pt'))
    return model

# 5. Evaluation function
def evaluate_model(model, test_loader, device):
    model.eval()
    test_preds = []
    test_labels = []
    
    with torch.no_grad():
        for batch in tqdm(test_loader, desc="Testing"):
            input_ids = batch['input_ids'].to(device)
            attention_mask = batch['attention_mask'].to(device)
            labels = batch['label'].to(device)
            
            outputs = model(input_ids, attention_mask)
            _, preds = torch.max(outputs, dim=1)
            
            test_preds.extend(preds.cpu().tolist())
            test_labels.extend(labels.cpu().tolist())
    
    # Calculate metrics
    accuracy = accuracy_score(test_labels, test_preds)
    precision, recall, f1, _ = precision_recall_fscore_support(
        test_labels, test_preds, average='binary'
    )
    
    return {
        'accuracy': accuracy,
        'precision': precision,
        'recall': recall,
        'f1': f1
    }

# 6. Main function
def main():
    parser = argparse.ArgumentParser(description='Train depression classifier')
    parser.add_argument('--data_path', type=str, default='depression_dataset_reddit_cleaned_final.csv', 
                        help='Path to the cleaned dataset')
    parser.add_argument('--batch_size', type=int, default=16, help='Batch size for training')
    parser.add_argument('--epochs', type=int, default=3, help='Number of training epochs')
    parser.add_argument('--learning_rate', type=float, default=2e-5, help='Learning rate')
    args = parser.parse_args()
    
    # Check for GPU
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    print(f'Using device: {device}')
    
    # Load data
    df = pd.read_csv(args.data_path)
    print(f'Loaded dataset with {len(df)} examples')
    
    # Prepare data
    train_loader, val_loader, test_loader = prepare_dataloaders(
        df, batch_size=args.batch_size
    )
    print(f'Training samples: {len(train_loader.dataset)}')
    print(f'Validation samples: {len(val_loader.dataset)}')
    print(f'Testing samples: {len(test_loader.dataset)}')
    
    # Create model
    model = DepressionClassifier()
    print('Model created')
    
    # Train model
    print('Starting training...')
    trained_model = train_model(
        model, 
        train_loader, 
        val_loader, 
        device,
        epochs=args.epochs,
        learning_rate=args.learning_rate
    )
    
    # Evaluate model
    print('Evaluating model...')
    metrics = evaluate_model(trained_model, test_loader, device)
    
    # Print results
    print('\nTest Results:')
    for metric, value in metrics.items():
        print(f'{metric}: {value:.4f}')

if __name__ == '__main__':
    main()