Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from sklearn.linear_model import LinearRegression
|
5 |
+
from sklearn.model_selection import train_test_split
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
|
8 |
+
# Load the dataset and preprocess
|
9 |
+
df = pd.read_csv('GOOG.csv')
|
10 |
+
df = df.drop(columns=[
|
11 |
+
'symbol', 'adjClose', 'adjHigh', 'adjLow', 'adjOpen', 'adjVolume', 'divCash', 'splitFactor'
|
12 |
+
], axis=1)
|
13 |
+
|
14 |
+
# Split the data
|
15 |
+
X = df[['open', 'high', 'low', 'volume']].values
|
16 |
+
y = df['close'].values
|
17 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
|
18 |
+
|
19 |
+
# Train the model
|
20 |
+
regressor = LinearRegression()
|
21 |
+
regressor.fit(X_train, y_train)
|
22 |
+
|
23 |
+
# Define the prediction function
|
24 |
+
def predict_stock_price(open_price, high_price, low_price, volume):
|
25 |
+
input_data = np.array([[open_price, high_price, low_price, volume]])
|
26 |
+
predicted_price = regressor.predict(input_data)[0]
|
27 |
+
return round(predicted_price, 2)
|
28 |
+
|
29 |
+
# Create the Gradio interface
|
30 |
+
iface = gr.Interface(
|
31 |
+
fn=predict_stock_price,
|
32 |
+
inputs=[
|
33 |
+
gr.Number(label="Opening Price"),
|
34 |
+
gr.Number(label="High Price"),
|
35 |
+
gr.Number(label="Low Price"),
|
36 |
+
gr.Number(label="Volume")
|
37 |
+
],
|
38 |
+
outputs=gr.Text(label="Predicted Closing Price"),
|
39 |
+
title="Stock Price Prediction App",
|
40 |
+
description="Enter stock data to predict the closing price using a Linear Regression model."
|
41 |
+
)
|
42 |
+
|
43 |
+
# Run the Gradio app
|
44 |
+
if __name__ == "__main__":
|
45 |
+
iface.launch()
|