Spaces:
Sleeping
Sleeping
Delete Stock.ipynb
Browse files- Stock.ipynb +0 -53
Stock.ipynb
DELETED
@@ -1,53 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"nbformat": 4,
|
3 |
-
"nbformat_minor": 0,
|
4 |
-
"metadata": {
|
5 |
-
"colab": {
|
6 |
-
"provenance": []
|
7 |
-
},
|
8 |
-
"kernelspec": {
|
9 |
-
"name": "python3",
|
10 |
-
"display_name": "Python 3"
|
11 |
-
},
|
12 |
-
"language_info": {
|
13 |
-
"name": "python"
|
14 |
-
}
|
15 |
-
},
|
16 |
-
"cells": [
|
17 |
-
{
|
18 |
-
"cell_type": "code",
|
19 |
-
"execution_count": null,
|
20 |
-
"metadata": {
|
21 |
-
"id": "6Pt_GlNEmvXv"
|
22 |
-
},
|
23 |
-
"outputs": [],
|
24 |
-
"source": [
|
25 |
-
"import joblib\n",
|
26 |
-
"import numpy as np\n",
|
27 |
-
"\n",
|
28 |
-
"\n",
|
29 |
-
"# Load your trained model\n",
|
30 |
-
"model = joblib.load('stock_model.pkl')\n",
|
31 |
-
"\n",
|
32 |
-
"# Define a function for prediction\n",
|
33 |
-
"def predict_stock_price(features):\n",
|
34 |
-
" \"\"\"\n",
|
35 |
-
" Predict stock price based on input features.\n",
|
36 |
-
" :param features: Comma-separated string of numerical features\n",
|
37 |
-
" :return: Predicted stock price\n",
|
38 |
-
" \"\"\"\n",
|
39 |
-
" try:\n",
|
40 |
-
" # Convert input features from string to a numpy array\n",
|
41 |
-
" features = np.array([float(x.strip()) for x in features.split(\",\")]).reshape(1, -1)\n",
|
42 |
-
"\n",
|
43 |
-
" # Predict using the model\n",
|
44 |
-
" prediction = model.predict(features)\n",
|
45 |
-
" return f\"Predicted Stock Price: {prediction[0]}\"\n",
|
46 |
-
" except ValueError:\n",
|
47 |
-
" return \"Error: Please ensure all input features are numeric and comma-separated.\"\n",
|
48 |
-
" except Exception as e:\n",
|
49 |
-
" return f\"Error: {str(e)}\"\n"
|
50 |
-
]
|
51 |
-
}
|
52 |
-
]
|
53 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|