PebinAPJ commited on
Commit
fe87024
·
verified ·
1 Parent(s): 51f2902

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -40
app.py DELETED
@@ -1,40 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- """app.py
3
-
4
- Automatically generated by Colab.
5
-
6
- Original file is located at
7
- https://colab.research.google.com/drive/1LNqeNTVe-zMc4YfmFi5S5fPJJcv572lx
8
- """
9
-
10
- import gradio as gr
11
- import pickle
12
- import numpy as np
13
-
14
- # Load the trained model
15
- with open("stock_model.pkl", "rb") as file:
16
- model = pickle.load(file)
17
-
18
- # Define the prediction function
19
- def predict_stock_price(features):
20
- try:
21
- # Convert input string to a NumPy array
22
- features_array = np.array([float(x) for x in features.split(",")]).reshape(1, -1)
23
- # Predict using the model
24
- prediction = model.predict(features_array)
25
- return f"Predicted Stock Price: {prediction[0]}"
26
- except Exception as e:
27
- return f"Error: {e}"
28
-
29
- # Create a Gradio Interface
30
- interface = gr.Interface(
31
- fn=predict_stock_price, # Function to call
32
- inputs=gr.Textbox(label="Input Features (comma-separated)", placeholder="1.5, 2.3, 0.7, 5.4"),
33
- outputs=gr.Textbox(label="Prediction"),
34
- title="Stock Price Predictor",
35
- description="Enter features as a comma-separated list to predict stock prices."
36
- )
37
-
38
- # Launch the Gradio app
39
- if __name__ == "__main__":
40
- interface.launch()