Parthebhan commited on
Commit
d1f9bf3
·
verified ·
1 Parent(s): 64a1b9d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -7,12 +7,12 @@ with open('./rf_cv_waze.pickle' , 'rb') as file:
7
 
8
  # Define the function for making predictions
9
  def salifort(sessions, drives, total_sessions, n_days_after_onboarding, total_navigations_fav1, total_navigations_fav2, driven_km_drives, duration_minutes_drives, activity_days, driving_days, km_per_driving_day, percent_sessions_in_last_month, professional_driver, total_sessions_per_day, km_per_hour, km_per_drive, percent_of_drives_to_favorite, device2):
10
- inputs = [[ float('sessions'), float('drives'), float('total_sessions'), float('n_days_after_onboarding'),
11
- float('total_navigations_fav1'), float('total_navigations_fav2'), float('driven_km_drives'),
12
- float('duration_minutes_drives'), float('activity_days'), float('driving_days'),
13
- float('km_per_driving_day'), float('percent_sessions_in_last_month'),
14
- float('professional_driver'), float('total_sessions_per_day'), float('km_per_hour'),
15
- float('km_per_drive'), float('percent_of_drives_to_favorite'), float('device2')
16
  ]]
17
  prediction = model.predict(inputs)
18
  prediction_value = prediction[0]
 
7
 
8
  # Define the function for making predictions
9
  def salifort(sessions, drives, total_sessions, n_days_after_onboarding, total_navigations_fav1, total_navigations_fav2, driven_km_drives, duration_minutes_drives, activity_days, driving_days, km_per_driving_day, percent_sessions_in_last_month, professional_driver, total_sessions_per_day, km_per_hour, km_per_drive, percent_of_drives_to_favorite, device2):
10
+ inputs = [[ float(sessions), float(drives), float(total_sessions), float(n_days_after_onboarding),
11
+ float(total_navigations_fav1), float(total_navigations_fav2), float(driven_km_drives),
12
+ float(duration_minutes_drives), float(activity_days), float(driving_days),
13
+ float(km_per_driving_day), float(percent_sessions_in_last_month),
14
+ float(professional_driver), float(total_sessions_per_day), float(km_per_hour),
15
+ float(km_per_drive), float(percent_of_drives_to_favorite), float(device2)
16
  ]]
17
  prediction = model.predict(inputs)
18
  prediction_value = prediction[0]