Parthebhan commited on
Commit
64a1b9d
·
verified ·
1 Parent(s): ed17d8c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -6
app.py CHANGED
@@ -7,12 +7,13 @@ with open('./rf_cv_waze.pickle' , 'rb') as file:
7
 
8
  # Define the function for making predictions
9
  def salifort(sessions, drives, total_sessions, n_days_after_onboarding, total_navigations_fav1, total_navigations_fav2, driven_km_drives, duration_minutes_drives, activity_days, driving_days, km_per_driving_day, percent_sessions_in_last_month, professional_driver, total_sessions_per_day, km_per_hour, km_per_drive, percent_of_drives_to_favorite, device2):
10
- inputs = [['sessions', 'drives', 'total_sessions', 'n_days_after_onboarding',
11
- 'total_navigations_fav1', 'total_navigations_fav2', 'driven_km_drives',
12
- 'duration_minutes_drives', 'activity_days', 'driving_days',
13
- 'km_per_driving_day', 'percent_sessions_in_last_month',
14
- 'professional_driver', 'total_sessions_per_day', 'km_per_hour',
15
- 'km_per_drive', 'percent_of_drives_to_favorite', 'device2']]
 
16
  prediction = model.predict(inputs)
17
  prediction_value = prediction[0]
18
  if prediction_value == 0:
 
7
 
8
  # Define the function for making predictions
9
  def salifort(sessions, drives, total_sessions, n_days_after_onboarding, total_navigations_fav1, total_navigations_fav2, driven_km_drives, duration_minutes_drives, activity_days, driving_days, km_per_driving_day, percent_sessions_in_last_month, professional_driver, total_sessions_per_day, km_per_hour, km_per_drive, percent_of_drives_to_favorite, device2):
10
+ inputs = [[ float('sessions'), float('drives'), float('total_sessions'), float('n_days_after_onboarding'),
11
+ float('total_navigations_fav1'), float('total_navigations_fav2'), float('driven_km_drives'),
12
+ float('duration_minutes_drives'), float('activity_days'), float('driving_days'),
13
+ float('km_per_driving_day'), float('percent_sessions_in_last_month'),
14
+ float('professional_driver'), float('total_sessions_per_day'), float('km_per_hour'),
15
+ float('km_per_drive'), float('percent_of_drives_to_favorite'), float('device2')
16
+ ]]
17
  prediction = model.predict(inputs)
18
  prediction_value = prediction[0]
19
  if prediction_value == 0: