Spaces:
Sleeping
Sleeping
File size: 3,686 Bytes
3c01ef0 4afe316 3c01ef0 d959f48 4afe316 3c01ef0 5cfe920 3c01ef0 4afe316 5cfe920 d959f48 4afe316 3c01ef0 4afe316 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
import pickle
import gradio as gr
# Load the pickled model
with open('./salifort_rf3.pickle', 'rb') as file:
model = pickle.load(file)
# Define the function for making predictions
def salifort(last_evaluation, number_project, tenure, work_accident, promotion_last_5years, salary, department_IT, department_RandD, department_accounting, department_hr, department_management, department_marketing, department_product_mng, department_sales, department_support, department_technical, overworked):
inputs = [['last_evaluation', 'number_project', 'tenure', 'work_accident',
'promotion_last_5years', 'salary', 'department_IT', 'department_RandD',
'department_accounting', 'department_hr', 'department_management',
'department_marketing', 'department_product_mng', 'department_sales',
'department_support', 'department_technical', 'overworked']]
prediction = model.predict(inputs)
prediction_value = prediction[0][0]
if prediction_value == 0:
label_text = 'employee would not leave the company'
else:
label_text = 'employee will leave the company'
return label_text
# Create the Gradio interface
salifort_ga = gr.Interface(fn=salifort,
inputs = [
gr.Number(0, 1, label="last_evaluation: [0 1]"),
gr.Number(2, 7, label="number_project: [2 to 7]"),
gr.Number(2, 10, label="tenure: [2 to 10]"),
gr.Number(0, 1, label="work_accident: [0 1]"),
gr.Number(0, 1, label="promotion_last_5years: [0 1]"),
gr.Number(0, 2, label="salary: [0 1 2]"),
gr.Number(0, 1, label="department_IT: [0 1]"),
gr.Number(0, 1, label="department_RandD: [0 1]"),
gr.Number(0, 1, label="department_accounting: [0 1]"),
gr.Number(0, 1, label="department_hr: [0 1]"),
gr.Number(0, 1, label="department_management: [0 1]"),
gr.Number(0, 1, label="department_marketing: [0 1]"),
gr.Number(0, 1, label="department_product_mng: [0 1]"),
gr.Number(0, 1, label="department_sales: [0 1]"),
gr.Number(0, 1, label="department_support: [0 1]"),
gr.Number(0, 1, label="department_technical: [0 1]"),
gr.Number(0, 1, label="overworked: [0 1]")
],
outputs = "text", title="Data-driven suggestions for HR - Salifort Motors - Employee Retention",
examples = [
[0, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
[0, 3, 3, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1],
[0, 2, 3, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 6, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1]
],
description="Employee Retention Prediction Using Machine Learning",
theme='dark'
)
salifort_ga.launch(share=True) |