Parthebhan commited on
Commit
3c01ef0
·
verified ·
1 Parent(s): eb2ade0

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -0
app.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pickle
2
+ import gradio as gr
3
+
4
+ # Load the pickled model
5
+ with open('./Automatidata_gui.pickle', 'rb') as file:
6
+ model = pickle.load(file)
7
+
8
+ # Define the function for making predictions
9
+ def automatidata(VendorID, passenger_count, Distance, Duration, rush_hour):
10
+ inputs = [[VendorID, passenger_count, Distance, Duration, rush_hour]]
11
+ prediction = model.predict(inputs)
12
+ prediction_value = prediction[0][0]
13
+ return f"Fare amount(approx.) = {round(prediction_value, 2)} $"
14
+
15
+ # Create the Gradio interface
16
+ automatidata_ga = gr.Interface(fn=automatidata,
17
+ inputs=[
18
+ gr.Number(1, 2, label="VendorID - [1 or 2]"),
19
+ gr.Number(0, 6, label="Passenger Count - [1 to 6]"),
20
+ gr.Number(label="Distance in miles"),
21
+ gr.Number(label="Duration in mins"),
22
+ gr.Number(0, 1, label="Rush Hour - [0 or 1]")
23
+ ],
24
+ outputs="text", title="New York City Taxi and Limousine Commission (TLC) - Taxi Fares Estimator",
25
+ description="Predicting Taxi Fare Amount Using Machine Learning.",
26
+ theme='dark'
27
+ )
28
+
29
+ automatidata_ga.launch(share=True)