Parthebhan commited on
Commit
528ba8e
·
verified ·
1 Parent(s): c1b7912

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -35
app.py CHANGED
@@ -11,9 +11,9 @@ def cerviccancer(Age, Num_sexual_partners, First_sexual_intercourse, Num_pregnan
11
  STDs_vaginal_condylomatosis, STDs_vulvoperineal_condylomatosis, STDs_syphilis, STDs_pelvic_inflammatory_disease, STDs_genital_herpes,
12
  STDs_molluscum_contagiosum, STDs_AIDS, STDs_HIV, STDs_Hepatitis_B, STDs_HPV, STDs_Num_of_diagnosis, Dx_Cancer, Dx_CIN, Dx, Hinselmann, Schiller, Citology):
13
  inputs = [[Age, Num_sexual_partners, First_sexual_intercourse, Num_pregnancies, Smokes, Smokes_years, Smokes_packs_year,
14
- Hormonal_Contraceptives, Hormonal_Contraceptives_years, IUD, IUD_years, STDs, STDs_condylomatosis, STDs_cervical_condylomatosis,
15
- STDs_vaginal_condylomatosis, STDs_vulvoperineal_condylomatosis, STDs_syphilis, STDs_pelvic_inflammatory_disease, STDs_genital_herpes,
16
- STDs_molluscum_contagiosum, STDs_AIDS, STDs_HIV, STDs_Hepatitis_B, STDs_HPV, STDs_Num_of_diagnosis, Dx_Cancer, Dx_CIN, Dx, Hinselmann, Schiller, Citology]]
17
  prediction = model.predict(inputs)
18
  prediction_value = prediction[0]
19
  return f"Predicted probability of Biopsy: {prediction_value}"
@@ -22,38 +22,38 @@ def cerviccancer(Age, Num_sexual_partners, First_sexual_intercourse, Num_pregnan
22
  # Create the Gradio interface
23
  automatidata_ga = gr.Interface(fn=automatidata,
24
  inputs = [
25
- gr.Number(13.0, 84.0, label="Age"),
26
- gr.Number(1.0, 28.0, label="Number of sexual partners"),
27
- gr.Number(10.0, 32.0, label="First sexual intercourse"),
28
- gr.Number(0.0, 11.0, label="Num of pregnancies"),
29
- gr.Number(0.0, 1.0, label="Smokes"),
30
- gr.Number(0.0, 37.0, label="Smokes (years)"),
31
- gr.Number(0.0, 37.0, label="Smokes (packs/year)"),
32
- gr.Number(0.0, 1.0, label="Hormonal Contraceptives"),
33
- gr.Number(0.0, 30.0, label="Hormonal Contraceptives (years)"),
34
- gr.Number(0.0, 1.0, label="IUD"),
35
- gr.Number(0.0, 19.0, label="IUD (years)"),
36
- gr.Number(0.0, 1.0, label="STDs"),
37
- gr.Number(0.0, 1.0, label="STDs:condylomatosis"),
38
- gr.Number(0.0, 0.0, label="STDs:cervical condylomatosis"),
39
- gr.Number(0.0, 1.0, label="STDs:vaginal condylomatosis"),
40
- gr.Number(0.0, 1.0, label="STDs:vulvo-perineal condylomatosis"),
41
- gr.Number(0.0, 1.0, label="STDs:syphilis"),
42
- gr.Number(0.0, 1.0, label="STDs:pelvic inflammatory disease"),
43
- gr.Number(0.0, 1.0, label="STDs:genital herpes"),
44
- gr.Number(0.0, 1.0, label="STDs:molluscum contagiosum"),
45
- gr.Number(0.0, 0.0, label="STDs:AIDS"),
46
- gr.Number(0.0, 1.0, label="STDs:HIV"),
47
- gr.Number(0.0, 1.0, label="STDs:Hepatitis B"),
48
- gr.Number(0.0, 1.0, label="STDs:HPV"),
49
- gr.Number(0.0, 3.0, label="STDs: Number of diagnosis"),
50
- gr.Number(0.0, 1.0, label="Dx:Cancer"),
51
- gr.Number(0.0, 1.0, label="Dx:CIN"),
52
- gr.Number(0.0, 1.0, label="Dx"),
53
- gr.Number(0.0, 1.0, label="Hinselmann"),
54
- gr.Number(0.0, 1.0, label="Schiller"),
55
- gr.Number(0.0, 1.0, label="Citology"),
56
- gr.Number(0.0, 1.0, label="Biopsy")
57
  ]
58
 
59
  outputs="text", title="Cervical Cancer Risk Prediction",
 
11
  STDs_vaginal_condylomatosis, STDs_vulvoperineal_condylomatosis, STDs_syphilis, STDs_pelvic_inflammatory_disease, STDs_genital_herpes,
12
  STDs_molluscum_contagiosum, STDs_AIDS, STDs_HIV, STDs_Hepatitis_B, STDs_HPV, STDs_Num_of_diagnosis, Dx_Cancer, Dx_CIN, Dx, Hinselmann, Schiller, Citology):
13
  inputs = [[Age, Num_sexual_partners, First_sexual_intercourse, Num_pregnancies, Smokes, Smokes_years, Smokes_packs_year,
14
+ Hormonal_Contraceptives, Hormonal_Contraceptives_years, IUD, IUD_years, STDs, STDs_condylomatosis, STDs_cervical_condylomatosis,
15
+ STDs_vaginal_condylomatosis, STDs_vulvoperineal_condylomatosis, STDs_syphilis, STDs_pelvic_inflammatory_disease, STDs_genital_herpes,
16
+ STDs_molluscum_contagiosum, STDs_AIDS, STDs_HIV, STDs_Hepatitis_B, STDs_HPV, STDs_Num_of_diagnosis, Dx_Cancer, Dx_CIN, Dx, Hinselmann, Schiller, Citology]]
17
  prediction = model.predict(inputs)
18
  prediction_value = prediction[0]
19
  return f"Predicted probability of Biopsy: {prediction_value}"
 
22
  # Create the Gradio interface
23
  automatidata_ga = gr.Interface(fn=automatidata,
24
  inputs = [
25
+ gr.Number(13.0, 84.0, label="Age: [13.0 84.0]"),
26
+ gr.Number(1.0, 28.0, label="Number of sexual partners: [1.0 28.0]"),
27
+ gr.Number(10.0, 32.0, label="First sexual intercourse: [10.0 32.0]"),
28
+ gr.Number(0.0, 11.0, label="Num of pregnancies: [0.0 11.0]"),
29
+ gr.Number(0.0, 1.0, label="Smokes: [0.0 1.0]"),
30
+ gr.Number(0.0, 37.0, label="Smokes (years): [0.0 37.0]"),
31
+ gr.Number(0.0, 37.0, label="Smokes (packs/year): [0.0 37.0]"),
32
+ gr.Number(0.0, 1.0, label="Hormonal Contraceptives: [0.0 1.0]"),
33
+ gr.Number(0.0, 30.0, label="Hormonal Contraceptives (years): [0.0 30.0]"),
34
+ gr.Number(0.0, 1.0, label="IUD: [0.0 1.0]"),
35
+ gr.Number(0.0, 19.0, label="IUD (years): [0.0 19.0]"),
36
+ gr.Number(0.0, 1.0, label="STDs: [0.0 1.0]"),
37
+ gr.Number(0.0, 1.0, label="STDs:condylomatosis: [0.0 1.0]"),
38
+ gr.Number(0.0, 0.0, label="STDs:cervical condylomatosis: [0.0 0.0]"),
39
+ gr.Number(0.0, 1.0, label="STDs:vaginal condylomatosis: [0.0 1.0]"),
40
+ gr.Number(0.0, 1.0, label="STDs:vulvo-perineal condylomatosis: [0.0 1.0]"),
41
+ gr.Number(0.0, 1.0, label="STDs:syphilis: [0.0 1.0]"),
42
+ gr.Number(0.0, 1.0, label="STDs:pelvic inflammatory disease: [0.0 1.0]"),
43
+ gr.Number(0.0, 1.0, label="STDs:genital herpes: [0.0 1.0]"),
44
+ gr.Number(0.0, 1.0, label="STDs:molluscum contagiosum: [0.0 1.0]"),
45
+ gr.Number(0.0, 0.0, label="STDs:AIDS: [0.0 0.0]"),
46
+ gr.Number(0.0, 1.0, label="STDs:HIV: [0.0 1.0]"),
47
+ gr.Number(0.0, 1.0, label="STDs:Hepatitis B: [0.0 1.0]"),
48
+ gr.Number(0.0, 1.0, label="STDs:HPV: [0.0 1.0]"),
49
+ gr.Number(0.0, 3.0, label="STDs: Number of diagnosis: [0.0 3.0]"),
50
+ gr.Number(0.0, 1.0, label="Dx:Cancer: [0.0 1.0]"),
51
+ gr.Number(0.0, 1.0, label="Dx:CIN: [0.0 1.0]"),
52
+ gr.Number(0.0, 1.0, label="Dx: [0.0 1.0]"),
53
+ gr.Number(0.0, 1.0, label="Hinselmann: [0.0 1.0]"),
54
+ gr.Number(0.0, 1.0, label="Schiller: [0.0 1.0]"),
55
+ gr.Number(0.0, 1.0, label="Citology: [0.0 1.0]"),
56
+ gr.Number(0.0, 1.0, label="Biopsy: [0.0 1.0]")
57
  ]
58
 
59
  outputs="text", title="Cervical Cancer Risk Prediction",