Parthebhan commited on
Commit
c1b7912
·
verified ·
1 Parent(s): 20a2540

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +64 -0
app.py ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pickle
2
+ import gradio as gr
3
+
4
+ # Load the pickled model
5
+ with open('./RF with pipe.pickle', 'rb') as file:
6
+ model = pickle.load(file)
7
+
8
+ # Define the function for making predictions
9
+ def cerviccancer(Age, Num_sexual_partners, First_sexual_intercourse, Num_pregnancies, Smokes, Smokes_years, Smokes_packs_year,
10
+ Hormonal_Contraceptives, Hormonal_Contraceptives_years, IUD, IUD_years, STDs, STDs_condylomatosis, STDs_cervical_condylomatosis,
11
+ STDs_vaginal_condylomatosis, STDs_vulvoperineal_condylomatosis, STDs_syphilis, STDs_pelvic_inflammatory_disease, STDs_genital_herpes,
12
+ STDs_molluscum_contagiosum, STDs_AIDS, STDs_HIV, STDs_Hepatitis_B, STDs_HPV, STDs_Num_of_diagnosis, Dx_Cancer, Dx_CIN, Dx, Hinselmann, Schiller, Citology):
13
+ inputs = [[Age, Num_sexual_partners, First_sexual_intercourse, Num_pregnancies, Smokes, Smokes_years, Smokes_packs_year,
14
+ Hormonal_Contraceptives, Hormonal_Contraceptives_years, IUD, IUD_years, STDs, STDs_condylomatosis, STDs_cervical_condylomatosis,
15
+ STDs_vaginal_condylomatosis, STDs_vulvoperineal_condylomatosis, STDs_syphilis, STDs_pelvic_inflammatory_disease, STDs_genital_herpes,
16
+ STDs_molluscum_contagiosum, STDs_AIDS, STDs_HIV, STDs_Hepatitis_B, STDs_HPV, STDs_Num_of_diagnosis, Dx_Cancer, Dx_CIN, Dx, Hinselmann, Schiller, Citology]]
17
+ prediction = model.predict(inputs)
18
+ prediction_value = prediction[0]
19
+ return f"Predicted probability of Biopsy: {prediction_value}"
20
+
21
+
22
+ # Create the Gradio interface
23
+ automatidata_ga = gr.Interface(fn=automatidata,
24
+ inputs = [
25
+ gr.Number(13.0, 84.0, label="Age"),
26
+ gr.Number(1.0, 28.0, label="Number of sexual partners"),
27
+ gr.Number(10.0, 32.0, label="First sexual intercourse"),
28
+ gr.Number(0.0, 11.0, label="Num of pregnancies"),
29
+ gr.Number(0.0, 1.0, label="Smokes"),
30
+ gr.Number(0.0, 37.0, label="Smokes (years)"),
31
+ gr.Number(0.0, 37.0, label="Smokes (packs/year)"),
32
+ gr.Number(0.0, 1.0, label="Hormonal Contraceptives"),
33
+ gr.Number(0.0, 30.0, label="Hormonal Contraceptives (years)"),
34
+ gr.Number(0.0, 1.0, label="IUD"),
35
+ gr.Number(0.0, 19.0, label="IUD (years)"),
36
+ gr.Number(0.0, 1.0, label="STDs"),
37
+ gr.Number(0.0, 1.0, label="STDs:condylomatosis"),
38
+ gr.Number(0.0, 0.0, label="STDs:cervical condylomatosis"),
39
+ gr.Number(0.0, 1.0, label="STDs:vaginal condylomatosis"),
40
+ gr.Number(0.0, 1.0, label="STDs:vulvo-perineal condylomatosis"),
41
+ gr.Number(0.0, 1.0, label="STDs:syphilis"),
42
+ gr.Number(0.0, 1.0, label="STDs:pelvic inflammatory disease"),
43
+ gr.Number(0.0, 1.0, label="STDs:genital herpes"),
44
+ gr.Number(0.0, 1.0, label="STDs:molluscum contagiosum"),
45
+ gr.Number(0.0, 0.0, label="STDs:AIDS"),
46
+ gr.Number(0.0, 1.0, label="STDs:HIV"),
47
+ gr.Number(0.0, 1.0, label="STDs:Hepatitis B"),
48
+ gr.Number(0.0, 1.0, label="STDs:HPV"),
49
+ gr.Number(0.0, 3.0, label="STDs: Number of diagnosis"),
50
+ gr.Number(0.0, 1.0, label="Dx:Cancer"),
51
+ gr.Number(0.0, 1.0, label="Dx:CIN"),
52
+ gr.Number(0.0, 1.0, label="Dx"),
53
+ gr.Number(0.0, 1.0, label="Hinselmann"),
54
+ gr.Number(0.0, 1.0, label="Schiller"),
55
+ gr.Number(0.0, 1.0, label="Citology"),
56
+ gr.Number(0.0, 1.0, label="Biopsy")
57
+ ]
58
+
59
+ outputs="text", title="Cervical Cancer Risk Prediction",
60
+ description="Predicting probability of Biopsy Using Machine Learning.",
61
+ theme='dark'
62
+ )
63
+
64
+ automatidata_ga.launch(auth = ('parthebhan','cerviccancer'),share=True)