|
iimport pickle |
|
import gradio as gr |
|
|
|
|
|
def read_pickle(path, saved_model_name): |
|
with open(path + saved_model_name + '.pickle', 'rb') as to_read: |
|
model = pickle.load(to_read) |
|
return model |
|
|
|
|
|
path = './' |
|
model = read_pickle(path, "Automatidata_gui") |
|
|
|
|
|
def automatidata(VendorID, passenger_count, Distance, Duration, rush_hour): |
|
inputs = [[VendorID, passenger_count, Distance, Duration, rush_hour]] |
|
prediction = model.predict(inputs) |
|
prediction_value = prediction[0][0] |
|
return f"Fare amount(approx.) = {round(prediction_value, 2)} $" |
|
|
|
|
|
automatidata_ga = gr.Interface(fn=automatidata, |
|
inputs=[ |
|
gr.Number(1, 2, label="VendorID - [1, 2]"), |
|
gr.Number(0, 6, label="Passenger Count"), |
|
gr.Number(label="Distance"), |
|
gr.Number(label="Duration"), |
|
gr.Number(0, 1, label="Rush Hour") |
|
], |
|
outputs="text", title="Taxi Fares Estimator", |
|
description="Predicting Taxi Fare Amount Using Machine Learning." |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
automatidata_ga.launch(share=True) |
|
|