Update app.py
Browse files
app.py
CHANGED
@@ -1 +1,36 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
iimport pickle
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
# Define the function to read the pickled model
|
5 |
+
def read_pickle(path, saved_model_name):
|
6 |
+
with open(path + saved_model_name + '.pickle', 'rb') as to_read:
|
7 |
+
model = pickle.load(to_read)
|
8 |
+
return model
|
9 |
+
|
10 |
+
# Load the pickled model
|
11 |
+
path = './' # Assuming the model file is in the current directory
|
12 |
+
model = read_pickle(path, "Automatidata_gui")
|
13 |
+
|
14 |
+
# Define the function for making predictions
|
15 |
+
def automatidata(VendorID, passenger_count, Distance, Duration, rush_hour):
|
16 |
+
inputs = [[VendorID, passenger_count, Distance, Duration, rush_hour]]
|
17 |
+
prediction = model.predict(inputs)
|
18 |
+
prediction_value = prediction[0][0]
|
19 |
+
return f"Fare amount(approx.) = {round(prediction_value, 2)} $"
|
20 |
+
|
21 |
+
# Create the Gradio interface
|
22 |
+
automatidata_ga = gr.Interface(fn=automatidata,
|
23 |
+
inputs=[
|
24 |
+
gr.Number(1, 2, label="VendorID - [1, 2]"),
|
25 |
+
gr.Number(0, 6, label="Passenger Count"),
|
26 |
+
gr.Number(label="Distance"),
|
27 |
+
gr.Number(label="Duration"),
|
28 |
+
gr.Number(0, 1, label="Rush Hour")
|
29 |
+
],
|
30 |
+
outputs="text", title="Taxi Fares Estimator",
|
31 |
+
description="Predicting Taxi Fare Amount Using Machine Learning."
|
32 |
+
)
|
33 |
+
|
34 |
+
# Launch the interface
|
35 |
+
if __name__ == "__main__":
|
36 |
+
automatidata_ga.launch(share=True)
|