Spaces:
Sleeping
Sleeping
File size: 9,658 Bytes
f0467e2 7f96061 f0467e2 7f96061 83b5afe 7f96061 f0467e2 83b5afe f0467e2 7f96061 f0467e2 83b5afe f0467e2 7f96061 83b5afe 7f96061 c35ca83 f0467e2 7f96061 f0467e2 7f96061 f0467e2 7f96061 f0467e2 7f96061 f0467e2 7f96061 83b5afe 7f96061 c81a5f7 7f96061 c81a5f7 83b5afe 7f96061 c81a5f7 7f96061 83b5afe f0467e2 83b5afe c81a5f7 83b5afe f0467e2 c81a5f7 f0467e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import chainlit as cl
from langchain.retrievers import BM25Retriever, EnsembleRetriever
from langchain.vectorstores import FAISS
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.embeddings import CacheBackedEmbeddings
from langchain.storage import LocalFileStore
from langchain.agents.agent_toolkits import create_retriever_tool
from langchain.agents.agent_toolkits import create_conversational_retrieval_agent
from langchain.document_loaders import WikipediaLoader, CSVLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.prompts import ChatPromptTemplate
from langchain.agents import Tool
from langchain.agents import ZeroShotAgent, AgentExecutor
from langchain.chat_models import ChatOpenAI
from langchain import LLMChain
import os
os.environ["OPENAI_API_KEY"] = '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'
@cl.author_rename
def rename(orig_author: str):
rename_dict = {"RetrievalQA": "Consulting The Barbenheimer"}
return rename_dict.get(orig_author, orig_author)
@cl.on_chat_start
async def init():
msg = cl.Message(content=f"Building Index...")
await msg.send()
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature = 0)
# set up text splitters
wikipedia_text_splitter = RecursiveCharacterTextSplitter(
chunk_size = 1024,
chunk_overlap = 512,
length_function = len,
is_separator_regex= False,
separators = ["\n==", "\n", " "] # keep headings, then paragraphs, then sentences
)
csv_text_splitter = RecursiveCharacterTextSplitter(
chunk_size = 1024,
chunk_overlap = 512,
length_function = len,
is_separator_regex= False,
separators = ["\n", " "] # keep paragraphs, then sentences
)
# set up cached embeddings store
store = LocalFileStore("./.cache/")
core_embeddings_model = OpenAIEmbeddings()
embedder = CacheBackedEmbeddings.from_bytes_store(core_embeddings_model,
store,
namespace=core_embeddings_model.model)
# Barbie retrieval system (Wikipedia, CSV)
# load the multiple source documents for Barbie and build FAISS index
barbie_wikipedia_docs = WikipediaLoader(
query="Barbie (film)",
load_max_docs= 1, # YOUR CODE HERE,
doc_content_chars_max=10000000
).load()
barbie_csv_docs = CSVLoader(
file_path= "./barbie_data/barbie.csv",
source_column="Review"
).load()
# chunk the loaded documents using the text splitters
chunked_barbie_wikipedia_docs = wikipedia_text_splitter.transform_documents(barbie_wikipedia_docs)
chunked_barbie_csv_docs = csv_text_splitter.transform_documents(barbie_csv_docs)
# set up FAISS vector store and create retriever for CSV docs
barbie_csv_faiss_retriever = FAISS.from_documents(chunked_barbie_csv_docs, embedder)
# set up BM25 retriever
barbie_wikipedia_bm25_retriever = BM25Retriever.from_documents(
chunked_barbie_wikipedia_docs
)
barbie_wikipedia_bm25_retriever.k = 1
# set up FAISS vector store and create retriever
barbie_wikipedia_faiss_store = FAISS.from_documents(
chunked_barbie_wikipedia_docs,
embedder
)
barbie_wikipedia_faiss_retriever = barbie_wikipedia_faiss_store.as_retriever(search_kwargs={"k": 1})
# set up ensemble retriever
barbie_ensemble_retriever = EnsembleRetriever(
retrievers=[barbie_wikipedia_bm25_retriever, barbie_wikipedia_faiss_retriever],
weights= [0.25, 0.75] # should sum to 1
)
# create retriever tools
barbie_wikipedia_retrieval_tool = create_retriever_tool(
retriever=barbie_ensemble_retriever,
name='Search_Wikipedia',
description='Useful for when you need to answer questions about plot, cast, production, release, music, marketing, reception, themes and analysis of the Barbie movie.'
)
barbie_csv_retrieval_tool = create_retriever_tool(
retriever=barbie_csv_faiss_retriever.as_retriever(),
name='Search_Reviews',
description='Useful for when you need to answer questions about public reviews of the Barbie movie.'
)
barbie_retriever_tools = [barbie_wikipedia_retrieval_tool, barbie_csv_retrieval_tool]
# retrieval agent
barbie_retriever_agent_executor = create_conversational_retrieval_agent(llm=llm, tools=barbie_retriever_tools, verbose=True)
# Oppenheimer retrieval system (Wikipedia, CSV)
# load the multiple source documents for Oppenheimer and build FAISS index
oppenheimer_wikipedia_docs = WikipediaLoader(
query="Oppenheimer",
load_max_docs=1,
doc_content_chars_max=10000000
).load()
oppenheimer_csv_docs = CSVLoader(
file_path="./oppenheimer_data/oppenheimer.csv",
source_column="Review"
).load()
# chunk the loaded documents using the text splitters
chunked_opp_wikipedia_docs = wikipedia_text_splitter.transform_documents(oppenheimer_wikipedia_docs)
chunked_opp_csv_docs = csv_text_splitter.transform_documents(oppenheimer_csv_docs)
# set up FAISS vector store and create retriever for CSV docs
opp_csv_faiss_retriever = FAISS.from_documents(chunked_opp_csv_docs, embedder).as_retriever()
# set up BM25 retriever
opp_wikipedia_bm25_retriever = BM25Retriever.from_documents(chunked_opp_wikipedia_docs)
opp_wikipedia_bm25_retriever.k = 1
# set up FAISS vector store and create retriever
opp_wikipedia_faiss_store = FAISS.from_documents(
chunked_opp_wikipedia_docs,
embedder
)
opp_wikipedia_faiss_retriever = opp_wikipedia_faiss_store.as_retriever(search_kwargs={"k": 1})
# set up ensemble retriever
opp_ensemble_retriever = EnsembleRetriever(
retrievers=[opp_wikipedia_bm25_retriever, opp_wikipedia_faiss_retriever],
weights= [0.25, 0.75] # should sum to 1
)
# setup prompt
system_message = """Use the information from the below two sources to answer any questions.
Source 1: public user reviews about the Oppenheimer movie
<source1>
{source1}
</source1>
Source 2: the wikipedia page for the Oppenheimer movie including the plot summary, cast, and production information
<source2>
{source2}
</source2>
"""
prompt = ChatPromptTemplate.from_messages([("system", system_message), ("human", "{question}")])
# build multi-source chain
oppenheimer_multisource_chain = {
"source1": (lambda x: x["question"]) | opp_ensemble_retriever,
"source2": (lambda x: x["question"]) | opp_csv_faiss_retriever,
"question": lambda x: x["question"],
} | prompt | llm
# Agent creation
# set up tools
def query_barbie(input):
return barbie_retriever_agent_executor({"input" : input})
def query_oppenheimer(input):
return oppenheimer_multisource_chain.invoke({"question" : input})
tools = [
Tool(
name="BarbieInfo",
func=query_barbie,
description='Useful when you need to answer questions about the Barbie movie'
),
Tool(
name="OppenheimerInfo",
func=query_oppenheimer,
description='Useful when you need to answer questions about the Oppenheimer movie'
),
]
# create prompt
prefix = """Have a conversation with a human, answering the following questions as best you can. You have access to the following tools:"""
suffix = """Begin!"
Question: {input}
{agent_scratchpad}"""
prompt = ZeroShotAgent.create_prompt(
tools=tools,
prefix=prefix,
suffix=suffix,
input_variables=['input', 'agent_scratchpad']
)
# chain llm with prompt
llm_chain = LLMChain(llm=llm, prompt=prompt, verbose=True)
# create reasoning agent
barbenheimer_agent = ZeroShotAgent(
llm_chain=llm_chain,
tools=tools,
verbose=True )
# create execution agent
barbenheimer_agent_chain = await cl.make_async(AgentExecutor.from_agent_and_tools)(
agent=barbenheimer_agent,
tools=tools,
verbose=True )
cl.user_session.set("chain", barbenheimer_agent_chain)
msg.content = f"Agent ready!"
await msg.send()
@cl.on_message
async def main(message):
# msg = cl.Message(content=f"Thinking...")
# await msg.send()
chain = cl.user_session.get("chain")
cb = cl.AsyncLangchainCallbackHandler(
stream_final_answer=False, answer_prefix_tokens=["FINAL", "ANSWER"]
)
cb.answer_reached = True
res = await chain.acall(message, callbacks=[cb], )
# msg = cl.Message(content=f"{res}")
# await msg.send()
answer = res["result"]
source_elements = []
visited_sources = set()
# Get the documents from the user session
docs = res["source_documents"]
metadatas = [doc.metadata for doc in docs]
all_sources = [m["source"] for m in metadatas]
for source in all_sources:
if source in visited_sources:
continue
visited_sources.add(source)
# Create the text element referenced in the message
source_elements.append(
cl.Text(content="https://www.imdb.com" + source, name="Review URL")
)
if source_elements:
answer += f"\nSources: {', '.join([e.content.decode('utf-8') for e in source_elements])}"
else:
answer += "\nNo sources found"
await cl.Message(content=answer, elements=source_elements).send()
|