File size: 5,171 Bytes
5ea1b6f
5eb7f8a
 
5ea1b6f
5eb7f8a
ede25fc
2e0c5aa
5ea1b6f
2e121c3
2e0c5aa
 
ede25fc
5ea1b6f
 
 
ede25fc
2e0c5aa
8dd49c9
ede25fc
65406c2
ede25fc
65406c2
ede25fc
 
515b121
 
 
 
3906ca5
ae5576c
515b121
5ea1b6f
 
5eb7f8a
 
 
 
2e0c5aa
 
78fdcf8
 
 
 
 
 
 
 
 
 
2e0c5aa
2d84522
78fdcf8
 
 
 
 
 
 
 
 
 
 
 
2e0c5aa
78fdcf8
 
 
 
 
d9403e1
78fdcf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ea1b6f
 
c257e9e
764e17a
515b121
 
 
 
3906ca5
515b121
 
 
3906ca5
515b121
 
 
 
 
 
 
 
 
5ea1b6f
78fdcf8
5ea1b6f
 
 
 
c3e6926
515b121
 
c3e6926
515b121
 
c3e6926
515b121
78fdcf8
 
515b121
5ea1b6f
 
ede25fc
5ea1b6f
ede25fc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import gradio as gr
import pickle
from datasets import load_dataset
from plaid.containers.sample import Sample


import numpy as np
import pyrender
from trimesh import Trimesh
import matplotlib as mpl
import matplotlib.cm as cm

import os
# switch to "osmesa" or "egl" before loading pyrender
os.environ["PYOPENGL_PLATFORM"] = "egl"


hf_dataset = load_dataset("PLAID-datasets/Rotor37", split="all_samples")

nb_samples = 1000

field_names_train = ["Density", "Pressure", "Temperature"]


_HEADER_ = '''
<h2><b>Visualization demo of <a href='https://huggingface.co/datasets/PLAID-datasets/Rotor37' target='_blank'><b>Rotor37 dataset</b></b></h2>
'''

def round_num(num)->str:
    return '%s' % float('%.3g' % num)

def sample_info(sample_id_str, fieldn):

    sample_ = hf_dataset[int(sample_id_str)]["sample"]
    plaid_sample = Sample.model_validate(pickle.loads(sample_))
    # plaid_sample = Sample.load_from_dir(f"Tensile2d/dataset/samples/sample_"+str(sample_id_str).zfill(9))

    nodes = plaid_sample.get_nodes()
    field = plaid_sample.get_field(fieldn)
    # if nodes.shape[1] == 2:
    #     nodes__ = np.zeros((nodes.shape[0],nodes.shape[1]+1))
    #     nodes__[:,:-1] = nodes
    #     nodes = nodes__

    norm = (field - field.min()) / (field.max() - field.min())
    colormap_func = mpl.pyplot.get_cmap('viridis')
    rgb_colors = colormap_func(norm)[:, :3]
    
    nb_nodes = nodes.shape[0]

    quads = plaid_sample.get_elements()['QUAD_4']
    nb_quads = quads.shape[0]

    assert field.shape[0] == nb_nodes

    with open("visu.obj", 'w') as f:
        for i in range(nb_nodes):
            f.write(f"v {nodes[i,0]} {nodes[i,1]} {nodes[i,2]} {rgb_colors[i,0]} {rgb_colors[i,1]} {rgb_colors[i,2]}\n")
       
        for i in range(nb_quads):
            f.write(f"f {quads[i,0] + 1} {quads[i,1] + 1} {quads[i,2] + 1} {quads[i,3] + 1}\n")

    # quads = plaid_sample.get_elements()['QUAD_4']

    # # generate colormap
    # if np.linalg.norm(field) > 0:
    #     norm = mpl.colors.Normalize(vmin=np.min(field), vmax=np.max(field))
    #     cmap = cm.nipy_spectral#cm.coolwarm
    #     m = cm.ScalarMappable(norm=norm, cmap=cmap)
    
    #     vertex_colors = m.to_rgba(field)[:,:3]
    # else:
    #     vertex_colors = 1+np.zeros((field.shape[0], 3))
    #     vertex_colors[:,0] = 0.2298057
    #     vertex_colors[:,1] = 0.01555616
    #     vertex_colors[:,2] = 0.15023281

    # # generate mesh
    # trimesh = Trimesh(vertices = nodes, faces = quads)
    # trimesh.visual.vertex_colors = vertex_colors
    # mesh = pyrender.Mesh.from_trimesh(trimesh, smooth=False)

    # # compose scene
    # scene = pyrender.Scene(ambient_light=[.1, .1, .3], bg_color=[0, 0, 0])
    # camera = pyrender.PerspectiveCamera( yfov=np.pi / 6.0)
    # light = pyrender.DirectionalLight(color=[1,1,1], intensity=1000.)

    # scene.add(mesh, pose=  np.eye(4))
    # scene.add(light, pose=  np.eye(4))

    # scene.add(camera, pose=[[ 1,  0,  0,  0.02],
    #                         [ 0,  1,  0,  0.21],
    #                         [ 0,  0,  1,  0.19],
    #                         [ 0,  0,  0,  1]])

    # # render scene
    # r = pyrender.OffscreenRenderer(1024, 1024)
    # color, _ = r.render(scene)
    

    str__ = f"Training sample {sample_id_str}\n"
    str__ += str(plaid_sample)+"\n"
    
    if len(hf_dataset.description['in_scalars_names'])>0:        
        str__ += "\ninput scalars:\n"
        for sname in hf_dataset.description['in_scalars_names']:
            str__ += f"- {sname}: {round_num(plaid_sample.get_scalar(sname))}\n"
    if len(hf_dataset.description['out_scalars_names'])>0:        
        str__ += "\noutput scalars:\n"
        for sname in hf_dataset.description['out_scalars_names']:
            str__ += f"- {sname}: {round_num(plaid_sample.get_scalar(sname))}\n"
    str__ += f"\n\nMesh number of nodes: {nodes.shape[0]}\n"
    if len(hf_dataset.description['in_fields_names'])>0:        
        str__ += "\ninput fields:\n"
        for fname in hf_dataset.description['in_fields_names']:
            str__ += f"- {fname}\n"
    if len(hf_dataset.description['out_fields_names'])>0:        
        str__ += "\noutput fields:\n"
        for fname in hf_dataset.description['out_fields_names']:
            str__ += f"- {fname}\n"

    return str__, "./visu.obj"


if __name__ == "__main__":

    with gr.Blocks(fill_width=True) as demo:
        gr.Markdown(_HEADER_)
        with gr.Row(variant="panel"):
            with gr.Column(scale=1):
                d1 = gr.Slider(0, nb_samples-1, value=0, label="Training sample id", info="Choose between 0 and "+str(nb_samples-1))
                output1 = gr.Text(label="Training sample info")
            with gr.Column(scale=2, min_width=300):
                d2 = gr.Dropdown(field_names_train, value=field_names_train[0], label="Field name")        
                # output2 = gr.Image(label="Training sample visualization")    
                output2 = gr.Model3D(label="Training sample visualization")
                
        d1.input(sample_info, [d1, d2], [output1, output2])
        d2.input(sample_info, [d1, d2], [output1, output2]) 

    demo.launch()