Spaces:
Running
Running
File size: 5,171 Bytes
5ea1b6f 5eb7f8a 5ea1b6f 5eb7f8a ede25fc 2e0c5aa 5ea1b6f 2e121c3 2e0c5aa ede25fc 5ea1b6f ede25fc 2e0c5aa 8dd49c9 ede25fc 65406c2 ede25fc 65406c2 ede25fc 515b121 3906ca5 ae5576c 515b121 5ea1b6f 5eb7f8a 2e0c5aa 78fdcf8 2e0c5aa 2d84522 78fdcf8 2e0c5aa 78fdcf8 d9403e1 78fdcf8 5ea1b6f c257e9e 764e17a 515b121 3906ca5 515b121 3906ca5 515b121 5ea1b6f 78fdcf8 5ea1b6f c3e6926 515b121 c3e6926 515b121 c3e6926 515b121 78fdcf8 515b121 5ea1b6f ede25fc 5ea1b6f ede25fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import gradio as gr
import pickle
from datasets import load_dataset
from plaid.containers.sample import Sample
import numpy as np
import pyrender
from trimesh import Trimesh
import matplotlib as mpl
import matplotlib.cm as cm
import os
# switch to "osmesa" or "egl" before loading pyrender
os.environ["PYOPENGL_PLATFORM"] = "egl"
hf_dataset = load_dataset("PLAID-datasets/Rotor37", split="all_samples")
nb_samples = 1000
field_names_train = ["Density", "Pressure", "Temperature"]
_HEADER_ = '''
<h2><b>Visualization demo of <a href='https://huggingface.co/datasets/PLAID-datasets/Rotor37' target='_blank'><b>Rotor37 dataset</b></b></h2>
'''
def round_num(num)->str:
return '%s' % float('%.3g' % num)
def sample_info(sample_id_str, fieldn):
sample_ = hf_dataset[int(sample_id_str)]["sample"]
plaid_sample = Sample.model_validate(pickle.loads(sample_))
# plaid_sample = Sample.load_from_dir(f"Tensile2d/dataset/samples/sample_"+str(sample_id_str).zfill(9))
nodes = plaid_sample.get_nodes()
field = plaid_sample.get_field(fieldn)
# if nodes.shape[1] == 2:
# nodes__ = np.zeros((nodes.shape[0],nodes.shape[1]+1))
# nodes__[:,:-1] = nodes
# nodes = nodes__
norm = (field - field.min()) / (field.max() - field.min())
colormap_func = mpl.pyplot.get_cmap('viridis')
rgb_colors = colormap_func(norm)[:, :3]
nb_nodes = nodes.shape[0]
quads = plaid_sample.get_elements()['QUAD_4']
nb_quads = quads.shape[0]
assert field.shape[0] == nb_nodes
with open("visu.obj", 'w') as f:
for i in range(nb_nodes):
f.write(f"v {nodes[i,0]} {nodes[i,1]} {nodes[i,2]} {rgb_colors[i,0]} {rgb_colors[i,1]} {rgb_colors[i,2]}\n")
for i in range(nb_quads):
f.write(f"f {quads[i,0] + 1} {quads[i,1] + 1} {quads[i,2] + 1} {quads[i,3] + 1}\n")
# quads = plaid_sample.get_elements()['QUAD_4']
# # generate colormap
# if np.linalg.norm(field) > 0:
# norm = mpl.colors.Normalize(vmin=np.min(field), vmax=np.max(field))
# cmap = cm.nipy_spectral#cm.coolwarm
# m = cm.ScalarMappable(norm=norm, cmap=cmap)
# vertex_colors = m.to_rgba(field)[:,:3]
# else:
# vertex_colors = 1+np.zeros((field.shape[0], 3))
# vertex_colors[:,0] = 0.2298057
# vertex_colors[:,1] = 0.01555616
# vertex_colors[:,2] = 0.15023281
# # generate mesh
# trimesh = Trimesh(vertices = nodes, faces = quads)
# trimesh.visual.vertex_colors = vertex_colors
# mesh = pyrender.Mesh.from_trimesh(trimesh, smooth=False)
# # compose scene
# scene = pyrender.Scene(ambient_light=[.1, .1, .3], bg_color=[0, 0, 0])
# camera = pyrender.PerspectiveCamera( yfov=np.pi / 6.0)
# light = pyrender.DirectionalLight(color=[1,1,1], intensity=1000.)
# scene.add(mesh, pose= np.eye(4))
# scene.add(light, pose= np.eye(4))
# scene.add(camera, pose=[[ 1, 0, 0, 0.02],
# [ 0, 1, 0, 0.21],
# [ 0, 0, 1, 0.19],
# [ 0, 0, 0, 1]])
# # render scene
# r = pyrender.OffscreenRenderer(1024, 1024)
# color, _ = r.render(scene)
str__ = f"Training sample {sample_id_str}\n"
str__ += str(plaid_sample)+"\n"
if len(hf_dataset.description['in_scalars_names'])>0:
str__ += "\ninput scalars:\n"
for sname in hf_dataset.description['in_scalars_names']:
str__ += f"- {sname}: {round_num(plaid_sample.get_scalar(sname))}\n"
if len(hf_dataset.description['out_scalars_names'])>0:
str__ += "\noutput scalars:\n"
for sname in hf_dataset.description['out_scalars_names']:
str__ += f"- {sname}: {round_num(plaid_sample.get_scalar(sname))}\n"
str__ += f"\n\nMesh number of nodes: {nodes.shape[0]}\n"
if len(hf_dataset.description['in_fields_names'])>0:
str__ += "\ninput fields:\n"
for fname in hf_dataset.description['in_fields_names']:
str__ += f"- {fname}\n"
if len(hf_dataset.description['out_fields_names'])>0:
str__ += "\noutput fields:\n"
for fname in hf_dataset.description['out_fields_names']:
str__ += f"- {fname}\n"
return str__, "./visu.obj"
if __name__ == "__main__":
with gr.Blocks(fill_width=True) as demo:
gr.Markdown(_HEADER_)
with gr.Row(variant="panel"):
with gr.Column(scale=1):
d1 = gr.Slider(0, nb_samples-1, value=0, label="Training sample id", info="Choose between 0 and "+str(nb_samples-1))
output1 = gr.Text(label="Training sample info")
with gr.Column(scale=2, min_width=300):
d2 = gr.Dropdown(field_names_train, value=field_names_train[0], label="Field name")
# output2 = gr.Image(label="Training sample visualization")
output2 = gr.Model3D(label="Training sample visualization")
d1.input(sample_info, [d1, d2], [output1, output2])
d2.input(sample_info, [d1, d2], [output1, output2])
demo.launch()
|