Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -40,48 +40,65 @@ def sample_info(sample_id_str, fieldn):
|
|
40 |
|
41 |
nodes = plaid_sample.get_nodes()
|
42 |
field = plaid_sample.get_field(fieldn)
|
43 |
-
if nodes.shape[1] == 2:
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
quads = plaid_sample.get_elements()['QUAD_4']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
# generate colormap
|
52 |
-
if np.linalg.norm(field) > 0:
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
|
57 |
-
|
58 |
-
else:
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
# generate mesh
|
65 |
-
trimesh = Trimesh(vertices = nodes, faces = quads)
|
66 |
-
trimesh.visual.vertex_colors = vertex_colors
|
67 |
-
mesh = pyrender.Mesh.from_trimesh(trimesh, smooth=False)
|
68 |
-
|
69 |
-
# compose scene
|
70 |
-
scene = pyrender.Scene(ambient_light=[.1, .1, .3], bg_color=[0, 0, 0])
|
71 |
-
camera = pyrender.PerspectiveCamera( yfov=np.pi / 6.0)
|
72 |
-
light = pyrender.DirectionalLight(color=[1,1,1], intensity=1000.)
|
73 |
-
|
74 |
-
scene.add(mesh, pose= np.eye(4))
|
75 |
-
scene.add(light, pose= np.eye(4))
|
76 |
-
|
77 |
-
scene.add(camera, pose=[[ 1, 0, 0, 0.02],
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
# render scene
|
83 |
-
r = pyrender.OffscreenRenderer(1024, 1024)
|
84 |
-
color, _ = r.render(scene)
|
85 |
|
86 |
|
87 |
str__ = f"Training sample {sample_id_str}\n"
|
@@ -105,7 +122,7 @@ def sample_info(sample_id_str, fieldn):
|
|
105 |
for fname in hf_dataset.description['out_fields_names']:
|
106 |
str__ += f"- {fname}\n"
|
107 |
|
108 |
-
return str__,
|
109 |
|
110 |
|
111 |
if __name__ == "__main__":
|
@@ -118,7 +135,8 @@ if __name__ == "__main__":
|
|
118 |
output1 = gr.Text(label="Training sample info")
|
119 |
with gr.Column():
|
120 |
d2 = gr.Dropdown(field_names_train, value=field_names_train[0], label="Field name")
|
121 |
-
output2 = gr.Image(label="Training sample visualization")
|
|
|
122 |
|
123 |
d1.input(sample_info, [d1, d2], [output1, output2])
|
124 |
d2.input(sample_info, [d1, d2], [output1, output2])
|
|
|
40 |
|
41 |
nodes = plaid_sample.get_nodes()
|
42 |
field = plaid_sample.get_field(fieldn)
|
43 |
+
# if nodes.shape[1] == 2:
|
44 |
+
# nodes__ = np.zeros((nodes.shape[0],nodes.shape[1]+1))
|
45 |
+
# nodes__[:,:-1] = nodes
|
46 |
+
# nodes = nodes__
|
47 |
+
|
48 |
+
norm = (field - field.min()) / (field.max() - field.min())
|
49 |
+
colormap_func = mpl.pyplot.get_cmap('viridis')
|
50 |
+
rgb_colors = colormap_func(norm)[:, :3]
|
51 |
+
|
52 |
+
nb_nodes = nodes.shape[0]
|
53 |
|
54 |
quads = plaid_sample.get_elements()['QUAD_4']
|
55 |
+
nb_quads = quads.shape[0]
|
56 |
+
|
57 |
+
assert field.shape[0] == nb_nodes
|
58 |
+
|
59 |
+
with open("visu.obj", 'w') as f:
|
60 |
+
for i in range(nb_nodes):
|
61 |
+
f.write(f"v {nodes[i,0]} {nodes[i,1]} {nodes[i,2]} {rgb_colors[i,0]} {rgb_colors[i,1]} {rgb_colors[i,2]}\n")
|
62 |
+
|
63 |
+
for i in range(nb_quads):
|
64 |
+
f.write(f"f {quads[i,0] + 1} {quads[i,1] + 1} {quads[i,2] + 1} {quads[i,3] + 1}\n")
|
65 |
+
|
66 |
+
# quads = plaid_sample.get_elements()['QUAD_4']
|
67 |
|
68 |
+
# # generate colormap
|
69 |
+
# if np.linalg.norm(field) > 0:
|
70 |
+
# norm = mpl.colors.Normalize(vmin=np.min(field), vmax=np.max(field))
|
71 |
+
# cmap = cm.nipy_spectral#cm.coolwarm
|
72 |
+
# m = cm.ScalarMappable(norm=norm, cmap=cmap)
|
73 |
|
74 |
+
# vertex_colors = m.to_rgba(field)[:,:3]
|
75 |
+
# else:
|
76 |
+
# vertex_colors = 1+np.zeros((field.shape[0], 3))
|
77 |
+
# vertex_colors[:,0] = 0.2298057
|
78 |
+
# vertex_colors[:,1] = 0.01555616
|
79 |
+
# vertex_colors[:,2] = 0.15023281
|
80 |
+
|
81 |
+
# # generate mesh
|
82 |
+
# trimesh = Trimesh(vertices = nodes, faces = quads)
|
83 |
+
# trimesh.visual.vertex_colors = vertex_colors
|
84 |
+
# mesh = pyrender.Mesh.from_trimesh(trimesh, smooth=False)
|
85 |
+
|
86 |
+
# # compose scene
|
87 |
+
# scene = pyrender.Scene(ambient_light=[.1, .1, .3], bg_color=[0, 0, 0])
|
88 |
+
# camera = pyrender.PerspectiveCamera( yfov=np.pi / 6.0)
|
89 |
+
# light = pyrender.DirectionalLight(color=[1,1,1], intensity=1000.)
|
90 |
+
|
91 |
+
# scene.add(mesh, pose= np.eye(4))
|
92 |
+
# scene.add(light, pose= np.eye(4))
|
93 |
+
|
94 |
+
# scene.add(camera, pose=[[ 1, 0, 0, 0.02],
|
95 |
+
# [ 0, 1, 0, 0.21],
|
96 |
+
# [ 0, 0, 1, 0.19],
|
97 |
+
# [ 0, 0, 0, 1]])
|
98 |
+
|
99 |
+
# # render scene
|
100 |
+
# r = pyrender.OffscreenRenderer(1024, 1024)
|
101 |
+
# color, _ = r.render(scene)
|
102 |
|
103 |
|
104 |
str__ = f"Training sample {sample_id_str}\n"
|
|
|
122 |
for fname in hf_dataset.description['out_fields_names']:
|
123 |
str__ += f"- {fname}\n"
|
124 |
|
125 |
+
return str__, "./visu.obj"
|
126 |
|
127 |
|
128 |
if __name__ == "__main__":
|
|
|
135 |
output1 = gr.Text(label="Training sample info")
|
136 |
with gr.Column():
|
137 |
d2 = gr.Dropdown(field_names_train, value=field_names_train[0], label="Field name")
|
138 |
+
# output2 = gr.Image(label="Training sample visualization")
|
139 |
+
output2 = gr.Model3D(label="Training sample visualization")
|
140 |
|
141 |
d1.input(sample_info, [d1, d2], [output1, output2])
|
142 |
d2.input(sample_info, [d1, d2], [output1, output2])
|