File size: 1,169 Bytes
e098fac
25ef180
aa5e404
 
e098fac
 
c8ca6fe
 
a4dc2bc
c8ca6fe
 
aa5e404
2893544
 
 
 
 
 
 
 
 
 
25ef180
aa5e404
5612db5
c8ca6fe
aa5e404
c8ca6fe
 
4215842
c8ca6fe
 
a52084a
c8ca6fe
 
aa5e404
c8ca6fe
aa5e404
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import torch,os
from diffusers import StableVideoDiffusionPipeline
from diffusers.utils import load_image, export_to_video
from PIL import Image
from huggingface_hub import login
login(token=os.getenv("TOKEN"))
# Check if CUDA (GPU) is available, otherwise use CPU
device = "cuda" if torch.cuda.is_available() else "cpu"


# Function to generate the video
def Video(image):


    pipeline = StableVideoDiffusionPipeline.from_pretrained(
        "stabilityai/stable-video-diffusion-img2vid-xt-1-1", torch_dtype=torch.float32
    ).to(device)

    # Enable model offloading if using the CPU
    if device == "cpu":
        pipeline.enable_model_cpu_offload()
    
    image = Image.fromarray(image)
    image = image.resize((1024, 576))

    # Set random seed for reproducibility
    generator = torch.manual_seed(42)
    
    # Ensure the image is moved to the appropriate device (GPU or CPU)
    # image = image.to(device)
    
    # Generate the video frames
    frames = pipeline(image, decode_chunk_size=8, generator=generator).frames[0]
    
    # Export the frames to a video file
    export_to_video(frames, "generated.mp4", fps=7)
    
    return "generated.mp4"