Spaces:
Running
Running
Commit
·
aa5e404
1
Parent(s):
920b90f
oldisgold
Browse files- options/Video_model/Model.py +11 -78
options/Video_model/Model.py
CHANGED
@@ -1,85 +1,18 @@
|
|
1 |
import torch
|
2 |
-
from PIL import Image
|
3 |
-
import os
|
4 |
from diffusers import StableVideoDiffusionPipeline
|
5 |
-
from .
|
6 |
-
from
|
7 |
-
from glob import glob
|
8 |
-
from typing import Optional
|
9 |
-
|
10 |
-
# Define paths and device
|
11 |
-
svd_path = 'stabilityai/stable-video-diffusion-img2vid-xt-1-1'
|
12 |
-
lora_repo_path = 'RED-AIGC/TDD'
|
13 |
-
lora_weight_name = 'svd-xt-1-1_tdd_lora_weights.safetensors'
|
14 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
|
16 |
-
# Initialize the noise scheduler and pipeline
|
17 |
-
noise_scheduler = TDDSVDStochasticIterativeScheduler(
|
18 |
-
num_train_timesteps=250, sigma_min=0.002, sigma_max=700.0,
|
19 |
-
sigma_data=1.0, s_noise=1.0, rho=7, clip_denoised=False
|
20 |
-
)
|
21 |
pipeline = StableVideoDiffusionPipeline.from_pretrained(
|
22 |
-
|
23 |
-
)
|
24 |
-
|
25 |
-
|
26 |
-
# Video function definition
|
27 |
-
def Video(
|
28 |
-
image: Image,
|
29 |
-
seed: Optional[int] = 1,
|
30 |
-
randomize_seed: bool = False,
|
31 |
-
num_inference_steps: int = 4,
|
32 |
-
eta: float = 0.3,
|
33 |
-
min_guidance_scale: float = 1.0,
|
34 |
-
max_guidance_scale: float = 1.0,
|
35 |
-
fps: int = 7,
|
36 |
-
width: int = 512,
|
37 |
-
height: int = 512,
|
38 |
-
num_frames: int = 25,
|
39 |
-
motion_bucket_id: int = 127,
|
40 |
-
output_folder: str = "outputs_gradio",
|
41 |
-
):
|
42 |
-
# Set the eta value in the scheduler
|
43 |
-
pipeline.scheduler.set_eta(eta)
|
44 |
|
45 |
-
|
46 |
-
if randomize_seed:
|
47 |
-
seed = random.randint(0, 2**64 - 1)
|
48 |
-
generator = torch.manual_seed(seed)
|
49 |
-
|
50 |
-
# Ensure the image is converted to a format that the model can use
|
51 |
image = Image.fromarray(image)
|
52 |
-
|
53 |
-
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
54 |
-
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
55 |
-
|
56 |
-
# Perform computation with appropriate dtype based on device
|
57 |
-
# if device == "cuda":
|
58 |
-
# # Use float16 for GPU
|
59 |
-
# with torch.autocast(device_type='cuda', dtype=torch.float16):
|
60 |
-
# frames = pipeline(
|
61 |
-
# image, height=height, width=width,
|
62 |
-
# num_inference_steps=num_inference_steps,
|
63 |
-
# min_guidance_scale=min_guidance_scale,
|
64 |
-
# max_guidance_scale=max_guidance_scale,
|
65 |
-
# num_frames=num_frames, fps=fps, motion_bucket_id=motion_bucket_id,
|
66 |
-
# generator=generator,
|
67 |
-
# ).frames[0]
|
68 |
-
# else:
|
69 |
-
# Use bfloat16 for CPU as it's supported in torch.autocast
|
70 |
-
# with torch.autocast(device_type='cpu', dtype=torch.bfloat16):
|
71 |
-
frames = pipeline(
|
72 |
-
image, height=height, width=width,
|
73 |
-
num_inference_steps=num_inference_steps,
|
74 |
-
min_guidance_scale=min_guidance_scale,
|
75 |
-
max_guidance_scale=max_guidance_scale,
|
76 |
-
num_frames=num_frames, fps=fps, motion_bucket_id=motion_bucket_id,
|
77 |
-
generator=generator,
|
78 |
-
).frames[0]
|
79 |
-
|
80 |
-
|
81 |
-
# Save the generated video
|
82 |
-
save_video(frames, video_path, fps=fps, quality=5.0)
|
83 |
-
torch.manual_seed(seed)
|
84 |
|
85 |
-
|
|
|
|
|
|
|
|
1 |
import torch
|
|
|
|
|
2 |
from diffusers import StableVideoDiffusionPipeline
|
3 |
+
from diffusers.utils import load_image, export_to_video
|
4 |
+
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
|
|
|
|
|
|
|
|
|
|
6 |
pipeline = StableVideoDiffusionPipeline.from_pretrained(
|
7 |
+
"stabilityai/stable-video-diffusion-img2vid-xt-1-1", torch_dtype=torch.float16, variant="fp16"
|
8 |
+
)
|
9 |
+
pipeline.enable_model_cpu_offload()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
def Video(image):
|
|
|
|
|
|
|
|
|
|
|
12 |
image = Image.fromarray(image)
|
13 |
+
image = image.resize((1024, 576))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
generator = torch.manual_seed(42)
|
16 |
+
frames = pipeline(image, decode_chunk_size=8, generator=generator).frames[0]
|
17 |
+
export_to_video(frames, "generated.mp4", fps=7)
|
18 |
+
return "generated.mp4"
|