File size: 1,488 Bytes
3039940
25ef180
aa5e404
 
e098fac
 
c8ca6fe
 
a4dc2bc
3039940
 
 
 
 
 
c8ca6fe
 
aa5e404
2893544
 
 
a1cfbda
2893544
 
 
 
 
a1cfbda
 
 
2893544
25ef180
aa5e404
5612db5
c8ca6fe
aa5e404
c8ca6fe
 
4215842
c8ca6fe
 
a52084a
dc4366f
c8ca6fe
3039940
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import torch,os,imageio
from diffusers import StableVideoDiffusionPipeline
from diffusers.utils import load_image, export_to_video
from PIL import Image
from huggingface_hub import login
login(token=os.getenv("TOKEN"))
# Check if CUDA (GPU) is available, otherwise use CPU
device = "cuda" if torch.cuda.is_available() else "cpu"

def save_video(frames, save_path, fps, quality=9):
    writer = imageio.get_writer(save_path, fps=fps, quality=quality)
    for frame in frames:
        frame = np.array(frame)
        writer.append_data(frame)
    writer.close()

# Function to generate the video
def Video(image):


    pipeline = StableVideoDiffusionPipeline.from_pretrained(
        "stabilityai/stable-video-diffusion-img2vid-xt-1-1", torch_dtype=torch.float16
    ).to(device)

    # Enable model offloading if using the CPU
    if device == "cpu":
        pipeline.enable_model_cpu_offload()
    else:
        pipeline.enable_sequential_cpu_offload()

    
    image = Image.fromarray(image)
    image = image.resize((1024, 576))

    # Set random seed for reproducibility
    generator = torch.manual_seed(42)
    
    # Ensure the image is moved to the appropriate device (GPU or CPU)
    # image = image.to(device)
    
    # Generate the video frames
    frames = pipeline(image, decode_chunk_size=8, generator=generator).frames[0]
    path="generated.mp4"
    # Export the frames to a video file
    save_video(frames, path, fps=7)
    # vid=cv2.VideoCapture(path)
    return path