|
--- |
|
title: Documents Restoration |
|
emoji: 📊 |
|
colorFrom: purple |
|
colorTo: indigo |
|
sdk: gradio |
|
sdk_version: 4.31.0 |
|
app_file: app.py |
|
pinned: false |
|
--- |
|
|
|
<div align=center> |
|
|
|
# DocRes: A Generalist Model Toward Unifying Document Image Restoration Tasks |
|
|
|
</div> |
|
|
|
<p align="center"> |
|
<img src="images/motivation.jpg" width="400"> |
|
</p> |
|
|
|
This is the official implementation of our paper [DocRes: A Generalist Model Toward Unifying Document Image Restoration Tasks](https://arxiv.org/abs/2405.04408). |
|
|
|
## News |
|
🔥 A comprehensive [Recommendation for Document Image Processing](https://github.com/ZZZHANG-jx/Recommendations-Document-Image-Processing) is available. |
|
|
|
|
|
## Inference |
|
1. Put MBD model weights [mbd.pkl](https://1drv.ms/f/s!Ak15mSdV3Wy4iahoKckhDPVP5e2Czw?e=iClwdK) to `./data/MBD/checkpoint/` |
|
2. Put DocRes model weights [docres.pkl](https://1drv.ms/f/s!Ak15mSdV3Wy4iahoKckhDPVP5e2Czw?e=iClwdK) to `./checkpoints/` |
|
3. Run the following script and the results will be saved in `./restorted/`. We have provided some distorted examples in `./input/`. |
|
```bash |
|
python inference.py --im_path ./input/for_dewarping.png --task dewarping --save_dtsprompt 1 |
|
``` |
|
|
|
- `--im_path`: the path of input document image |
|
- `--task`: task that need to be executed, it must be one of _dewarping_, _deshadowing_, _appearance_, _deblurring_, _binarization_, or _end2end_ |
|
- `--save_dtsprompt`: whether to save the DTSPrompt |
|
|
|
## Evaluation |
|
|
|
1. Dataset preparation, see [dataset instruction](./data/README.md) |
|
2. Put MBD model weights [mbd.pkl](https://1drv.ms/f/s!Ak15mSdV3Wy4iahoKckhDPVP5e2Czw?e=iClwdK) to `data/MBD/checkpoint/` |
|
3. Put DocRes model weights [docres.pkl](https://1drv.ms/f/s!Ak15mSdV3Wy4iahoKckhDPVP5e2Czw?e=iClwdK) to `./checkpoints/` |
|
2. Run the following script |
|
```bash |
|
python eval.py --dataset realdae |
|
``` |
|
- `--dataset`: dataset that need to be evaluated, it can be set as _dir300_, _kligler_, _jung_, _osr_, _docunet\_docaligner_, _realdae_, _tdd_, and _dibco18_. |
|
|
|
## Training |
|
1. Dataset preparation, see [dataset instruction](./data/README.md) |
|
2. Specify the datasets_setting within `train.py` based on your dataset path and experimental setting. |
|
3. Run the following script |
|
```bash |
|
bash start_train.sh |
|
``` |
|
|
|
|
|
## Citation: |
|
``` |
|
@inproceedings{zhangdocres2024, |
|
Author = {Jiaxin Zhang, Dezhi Peng, Chongyu Liu , Peirong Zhang and Lianwen Jin}, |
|
Booktitle = {In Proceedings of the IEEE/CV Conference on Computer Vision and Pattern Recognition}, |
|
Title = {DocRes: A Generalist Model Toward Unifying Document Image Restoration Tasks}, |
|
Year = {2024}} |
|
``` |
|
## ⭐ Star Rising |
|
[](https://star-history.com/#ZZZHANG-jx/DocRes&Timeline) |
|
|