File size: 6,939 Bytes
13ed3b0
 
39999e2
13ed3b0
 
e4ff9c5
13ed3b0
 
39999e2
13ed3b0
 
39999e2
13ed3b0
 
 
 
 
e4ff9c5
 
 
13ed3b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4ff9c5
 
7bf4093
13ed3b0
e4ff9c5
 
7bf4093
13ed3b0
e4ff9c5
 
7bf4093
13ed3b0
e4ff9c5
 
7bf4093
13ed3b0
e4ff9c5
 
7bf4093
13ed3b0
e4ff9c5
13ed3b0
 
 
 
 
 
 
 
 
 
 
 
e4ff9c5
13ed3b0
 
 
e4ff9c5
 
 
1b32d80
e4ff9c5
 
1b32d80
e4ff9c5
 
13ed3b0
 
 
 
 
e4ff9c5
13ed3b0
 
 
 
e4ff9c5
13ed3b0
 
e4ff9c5
13ed3b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import os
import json
import gradio as gr
import spaces
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification
from sentence_splitter import SentenceSplitter
from itertools import product

# Get the Hugging Face token from environment variable
hf_token = os.getenv('HF_TOKEN')

cuda_available = torch.cuda.is_available()
device = torch.device("cuda" if cuda_available else "cpu")
print(f"Using device: {device}")

# Initialize paraphraser model and tokenizer
paraphraser_model_name = "Ateeqq/Text-Rewriter-Paraphraser"
paraphraser_tokenizer = AutoTokenizer.from_pretrained(paraphraser_model_name, token=hf_token)
paraphraser_model = AutoModelForSeq2SeqLM.from_pretrained(paraphraser_model_name, token=hf_token).to(device)

# Initialize classifier model and tokenizer
classifier_model_name = "andreas122001/roberta-mixed-detector"
classifier_tokenizer = AutoTokenizer.from_pretrained(classifier_model_name)
classifier_model = AutoModelForSequenceClassification.from_pretrained(classifier_model_name).to(device)

# Initialize sentence splitter
splitter = SentenceSplitter(language='en')

def classify_text(text):
    inputs = classifier_tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device)
    with torch.no_grad():
        outputs = classifier_model(**inputs)
    probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
    predicted_class = torch.argmax(probabilities, dim=-1).item()
    main_label = classifier_model.config.id2label[predicted_class]
    main_score = probabilities[0][predicted_class].item()
    return main_label, main_score

@spaces.GPU
def generate_paraphrases(text, setting, output_format):
    sentences = splitter.split(text)
    all_sentence_paraphrases = []
    
    if setting == 1:
        temperature = 0.6
        num_beams = 2
        num_return_sequences = 2
    elif setting == 2:
        temperature = 0.7
        num_beams = 3
        num_return_sequences = 3
    elif setting == 3:
        temperature = 0.8
        num_beams = 4
        num_return_sequences = 4
    elif setting == 4:
        temperature = 0.9
        num_beams = 5
        num_return_sequences = 5
    else:
        temperature = 1.0
        num_beams = 6
        num_return_sequences = 5
    
    max_length = 64
    
    formatted_output = "Original text:\n" + text + "\n\n"
    formatted_output += "Paraphrased versions:\n"
    
    json_output = {
        "original_text": text,
        "paraphrased_versions": [],
        "combined_versions": [],
        "human_like_versions": []
    }
    
    for i, sentence in enumerate(sentences):
        inputs = paraphraser_tokenizer(f'paraphraser: {sentence}', return_tensors="pt", padding="longest", truncation=True, max_length=max_length).input_ids.to(device)
        
        # Generate paraphrases 
        outputs = paraphraser_model.generate(
            inputs,
            num_beams=num_beams,
            num_beam_groups=num_beams,
            num_return_sequences=num_return_sequences,
            repetition_penalty=10.0,
            diversity_penalty=3.0,
            no_repeat_ngram_size=2,
            temperature=temperature,
            max_length=max_length
        )
        
        paraphrases = paraphraser_tokenizer.batch_decode(outputs, skip_special_tokens=True)
        
        formatted_output += f"Original sentence {i+1}: {sentence}\n"
        for j, paraphrase in enumerate(paraphrases, 1):
            formatted_output += f"  Paraphrase {j}: {paraphrase}\n"
        
        json_output["paraphrased_versions"].append({
            f"original_sentence_{i+1}": sentence,
            "paraphrases": paraphrases
        })
        
        all_sentence_paraphrases.append(paraphrases)
        formatted_output += "\n"
    
    all_combinations = list(product(*all_sentence_paraphrases))
    
    formatted_output += "\nCombined paraphrased versions:\n"
    combined_versions = []
    for i, combination in enumerate(all_combinations[:50], 1):  # Limit to 50 combinations
        combined_paraphrase = " ".join(combination)
        combined_versions.append(combined_paraphrase)
    
    json_output["combined_versions"] = combined_versions
    
    # Classify combined versions
    human_versions = []
    for i, version in enumerate(combined_versions, 1):
        label, score = classify_text(version)
        formatted_output += f"Version {i}:\n{version}\n"
        formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
        if label == "human-produced" or (label == "machine-generated" and score < 0.98):
            human_versions.append((version, label, score))
    
    formatted_output += "\nHuman-like or Less Confident Machine-generated versions:\n"
    for i, (version, label, score) in enumerate(human_versions, 1):
        formatted_output += f"Version {i}:\n{version}\n"
        formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
    
    json_output["human_like_versions"] = [
        {"version": version, "label": label, "confidence_score": score}
        for version, label, score in human_versions
    ]
    
    # If no human-like versions, include the top 5 least confident machine-generated versions
    if not human_versions:
        human_versions = sorted([(v, l, s) for v, l, s in zip(combined_versions, [classify_text(v)[0] for v in combined_versions], [classify_text(v)[1] for v in combined_versions])], key=lambda x: x[2])[:5]
        formatted_output += "\nNo human-like versions found. Showing top 5 least confident machine-generated versions:\n"
        for i, (version, label, score) in enumerate(human_versions, 1):
            formatted_output += f"Version {i}:\n{version}\n"
            formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
    
    if output_format == "text":
        return formatted_output, "\n\n".join([v[0] for v in human_versions])
    else:
        return json.dumps(json_output, indent=2), "\n\n".join([v[0] for v in human_versions])

# Define the Gradio interface
iface = gr.Interface(
    fn=generate_paraphrases,
    inputs=[
        gr.Textbox(lines=5, label="Input Text"),
        gr.Slider(minimum=1, maximum=5, step=1, label="Readability to Human-like Setting"),
        gr.Radio(["text", "json"], label="Output Format")
    ],
    outputs=[
        gr.Textbox(lines=20, label="Detailed Paraphrases and Classifications"),
        gr.Textbox(lines=10, label="Human-like or Less Confident Machine-generated Paraphrases")
    ],
    title="Advanced Diverse Paraphraser with Human-like Filter",
    description="Enter a text, select a setting from readable to human-like, and choose the output format to generate diverse paraphrased versions. Combined versions are classified, and those detected as human-produced or less confidently machine-generated are presented in the final output."
)

# Launch the interface
iface.launch()