asd
Browse files
app.py
CHANGED
@@ -1,175 +1,9 @@
|
|
1 |
-
# import os
|
2 |
-
# import json
|
3 |
-
# import gradio as gr
|
4 |
-
# import spaces
|
5 |
-
# import torch
|
6 |
-
# from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification
|
7 |
-
# from sentence_splitter import SentenceSplitter
|
8 |
-
# from itertools import product
|
9 |
-
|
10 |
-
# # Get the Hugging Face token from environment variable
|
11 |
-
# hf_token = os.getenv('HF_TOKEN')
|
12 |
-
|
13 |
-
# cuda_available = torch.cuda.is_available()
|
14 |
-
# device = torch.device("cuda" if cuda_available else "cpu")
|
15 |
-
# print(f"Using device: {device}")
|
16 |
-
|
17 |
-
# # Initialize paraphraser model and tokenizer
|
18 |
-
# paraphraser_model_name = "SamSJackson/paraphrase-dipper-no-ctx"
|
19 |
-
# paraphraser_tokenizer = AutoTokenizer.from_pretrained("google/t5-efficient-large-nl32")
|
20 |
-
# paraphraser_model = AutoModelForSeq2SeqLM.from_pretrained(paraphraser_model_name).to(device)
|
21 |
-
|
22 |
-
# # Initialize classifier model and tokenizer
|
23 |
-
# classifier_model_name = "andreas122001/roberta-mixed-detector"
|
24 |
-
# classifier_tokenizer = AutoTokenizer.from_pretrained(classifier_model_name)
|
25 |
-
# classifier_model = AutoModelForSequenceClassification.from_pretrained(classifier_model_name).to(device)
|
26 |
-
|
27 |
-
# # Initialize sentence splitter
|
28 |
-
# splitter = SentenceSplitter(language='en')
|
29 |
-
|
30 |
-
# def classify_text(text):
|
31 |
-
# inputs = classifier_tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device)
|
32 |
-
# with torch.no_grad():
|
33 |
-
# outputs = classifier_model(**inputs)
|
34 |
-
# probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
35 |
-
# predicted_class = torch.argmax(probabilities, dim=-1).item()
|
36 |
-
# main_label = classifier_model.config.id2label[predicted_class]
|
37 |
-
# main_score = probabilities[0][predicted_class].item()
|
38 |
-
# return main_label, main_score
|
39 |
-
|
40 |
-
# @spaces.GPU
|
41 |
-
# def generate_paraphrases(text, setting, output_format):
|
42 |
-
# sentences = splitter.split(text)
|
43 |
-
# all_sentence_paraphrases = []
|
44 |
-
|
45 |
-
# if setting == 1:
|
46 |
-
# lexical = 20
|
47 |
-
# order = 20
|
48 |
-
# elif setting == 2:
|
49 |
-
# lexical = 40
|
50 |
-
# order = 40
|
51 |
-
# elif setting == 3:
|
52 |
-
# lexical = 60
|
53 |
-
# order = 60
|
54 |
-
# elif setting == 4:
|
55 |
-
# lexical = 80
|
56 |
-
# order = 80
|
57 |
-
# else:
|
58 |
-
# lexical = 100
|
59 |
-
# order = 100
|
60 |
-
|
61 |
-
# num_return_sequences = 5
|
62 |
-
# max_length = 384
|
63 |
-
|
64 |
-
# formatted_output = "Original text:\n" + text + "\n\n"
|
65 |
-
# formatted_output += "Paraphrased versions:\n"
|
66 |
-
|
67 |
-
# json_output = {
|
68 |
-
# "original_text": text,
|
69 |
-
# "paraphrased_versions": [],
|
70 |
-
# "combined_versions": [],
|
71 |
-
# "human_like_versions": []
|
72 |
-
# }
|
73 |
-
|
74 |
-
# for i, sentence in enumerate(sentences):
|
75 |
-
# prompt = f"lexical = {lexical}, order = {order} {sentence}"
|
76 |
-
# inputs = paraphraser_tokenizer(
|
77 |
-
# prompt,
|
78 |
-
# return_tensors='pt',
|
79 |
-
# padding="longest",
|
80 |
-
# max_length=max_length,
|
81 |
-
# truncation=True,
|
82 |
-
# ).to(device)
|
83 |
-
|
84 |
-
# # Generate paraphrases
|
85 |
-
# outputs = paraphraser_model.generate(
|
86 |
-
# **inputs,
|
87 |
-
# top_p=0.95,
|
88 |
-
# do_sample=True,
|
89 |
-
# max_new_tokens=max_length,
|
90 |
-
# num_return_sequences=num_return_sequences
|
91 |
-
# )
|
92 |
-
|
93 |
-
# paraphrases = paraphraser_tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
94 |
-
|
95 |
-
# formatted_output += f"Original sentence {i+1}: {sentence}\n"
|
96 |
-
# for j, paraphrase in enumerate(paraphrases, 1):
|
97 |
-
# formatted_output += f" Paraphrase {j}: {paraphrase}\n"
|
98 |
-
|
99 |
-
# json_output["paraphrased_versions"].append({
|
100 |
-
# f"original_sentence_{i+1}": sentence,
|
101 |
-
# "paraphrases": paraphrases
|
102 |
-
# })
|
103 |
-
|
104 |
-
# all_sentence_paraphrases.append(paraphrases)
|
105 |
-
# formatted_output += "\n"
|
106 |
-
|
107 |
-
# all_combinations = list(product(*all_sentence_paraphrases))
|
108 |
-
|
109 |
-
# formatted_output += "\nCombined paraphrased versions:\n"
|
110 |
-
# combined_versions = []
|
111 |
-
# for i, combination in enumerate(all_combinations[:50], 1): # Limit to 50 combinations
|
112 |
-
# combined_paraphrase = " ".join(combination)
|
113 |
-
# combined_versions.append(combined_paraphrase)
|
114 |
-
|
115 |
-
# json_output["combined_versions"] = combined_versions
|
116 |
-
|
117 |
-
# # Classify combined versions
|
118 |
-
# human_versions = []
|
119 |
-
# for i, version in enumerate(combined_versions, 1):
|
120 |
-
# label, score = classify_text(version)
|
121 |
-
# formatted_output += f"Version {i}:\n{version}\n"
|
122 |
-
# formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
|
123 |
-
# if label == "human-produced" or (label == "machine-generated" and score < 0.98):
|
124 |
-
# human_versions.append((version, label, score))
|
125 |
-
|
126 |
-
# formatted_output += "\nHuman-like or Less Confident Machine-generated versions:\n"
|
127 |
-
# for i, (version, label, score) in enumerate(human_versions, 1):
|
128 |
-
# formatted_output += f"Version {i}:\n{version}\n"
|
129 |
-
# formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
|
130 |
-
|
131 |
-
# json_output["human_like_versions"] = [
|
132 |
-
# {"version": version, "label": label, "confidence_score": score}
|
133 |
-
# for version, label, score in human_versions
|
134 |
-
# ]
|
135 |
-
|
136 |
-
# # If no human-like versions, include the top 5 least confident machine-generated versions
|
137 |
-
# if not human_versions:
|
138 |
-
# human_versions = sorted([(v, l, s) for v, l, s in zip(combined_versions, [classify_text(v)[0] for v in combined_versions], [classify_text(v)[1] for v in combined_versions])], key=lambda x: x[2])[:5]
|
139 |
-
# formatted_output += "\nNo human-like versions found. Showing top 5 least confident machine-generated versions:\n"
|
140 |
-
# for i, (version, label, score) in enumerate(human_versions, 1):
|
141 |
-
# formatted_output += f"Version {i}:\n{version}\n"
|
142 |
-
# formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
|
143 |
-
|
144 |
-
# if output_format == "text":
|
145 |
-
# return formatted_output, "\n\n".join([v[0] for v in human_versions])
|
146 |
-
# else:
|
147 |
-
# return json.dumps(json_output, indent=2), "\n\n".join([v[0] for v in human_versions])
|
148 |
-
|
149 |
-
# # Define the Gradio interface
|
150 |
-
# iface = gr.Interface(
|
151 |
-
# fn=generate_paraphrases,
|
152 |
-
# inputs=[
|
153 |
-
# gr.Textbox(lines=5, label="Input Text"),
|
154 |
-
# gr.Slider(minimum=1, maximum=5, step=1, label="Readability to Human-like Setting"),
|
155 |
-
# gr.Radio(["text", "json"], label="Output Format")
|
156 |
-
# ],
|
157 |
-
# outputs=[
|
158 |
-
# gr.Textbox(lines=20, label="Detailed Paraphrases and Classifications"),
|
159 |
-
# gr.Textbox(lines=10, label="Human-like or Less Confident Machine-generated Paraphrases")
|
160 |
-
# ],
|
161 |
-
# title="Advanced Diverse Paraphraser with Human-like Filter",
|
162 |
-
# description="Enter a text, select a setting from readable to human-like, and choose the output format to generate diverse paraphrased versions. Combined versions are classified, and those detected as human-produced or less confidently machine-generated are presented in the final output."
|
163 |
-
# )
|
164 |
-
|
165 |
-
# # Launch the interface
|
166 |
-
# iface.launch()
|
167 |
import os
|
168 |
import json
|
169 |
import gradio as gr
|
170 |
import spaces
|
171 |
import torch
|
172 |
-
from transformers import AutoTokenizer,
|
173 |
from sentence_splitter import SentenceSplitter
|
174 |
from itertools import product
|
175 |
|
@@ -181,9 +15,9 @@ device = torch.device("cuda" if cuda_available else "cpu")
|
|
181 |
print(f"Using device: {device}")
|
182 |
|
183 |
# Initialize paraphraser model and tokenizer
|
184 |
-
paraphraser_model_name = "
|
185 |
-
paraphraser_tokenizer = AutoTokenizer.from_pretrained(
|
186 |
-
paraphraser_model =
|
187 |
|
188 |
# Initialize classifier model and tokenizer
|
189 |
classifier_model_name = "andreas122001/roberta-mixed-detector"
|
@@ -209,23 +43,23 @@ def generate_paraphrases(text, setting, output_format):
|
|
209 |
all_sentence_paraphrases = []
|
210 |
|
211 |
if setting == 1:
|
212 |
-
|
213 |
-
|
214 |
elif setting == 2:
|
215 |
-
|
216 |
-
|
217 |
elif setting == 3:
|
218 |
-
|
219 |
-
|
220 |
elif setting == 4:
|
221 |
-
|
222 |
-
|
223 |
else:
|
224 |
-
|
225 |
-
|
226 |
|
227 |
num_return_sequences = 5
|
228 |
-
max_length =
|
229 |
|
230 |
formatted_output = "Original text:\n" + text + "\n\n"
|
231 |
formatted_output += "Paraphrased versions:\n"
|
@@ -238,42 +72,33 @@ def generate_paraphrases(text, setting, output_format):
|
|
238 |
}
|
239 |
|
240 |
for i, sentence in enumerate(sentences):
|
241 |
-
|
242 |
-
inputs = paraphraser_tokenizer(
|
243 |
-
prompt,
|
244 |
-
return_tensors='pt',
|
245 |
-
padding="longest",
|
246 |
-
max_length=max_length,
|
247 |
-
truncation=True,
|
248 |
-
).to(device)
|
249 |
|
250 |
# Generate paraphrases
|
251 |
outputs = paraphraser_model.generate(
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
max_new_tokens=max_length,
|
256 |
num_return_sequences=num_return_sequences,
|
257 |
-
|
|
|
258 |
no_repeat_ngram_size=2,
|
259 |
-
|
|
|
260 |
)
|
261 |
|
262 |
paraphrases = paraphraser_tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
263 |
|
264 |
-
# Clean up paraphrases
|
265 |
-
cleaned_paraphrases = [p.replace(prompt, "").strip() for p in paraphrases]
|
266 |
-
|
267 |
formatted_output += f"Original sentence {i+1}: {sentence}\n"
|
268 |
-
for j, paraphrase in enumerate(
|
269 |
formatted_output += f" Paraphrase {j}: {paraphrase}\n"
|
270 |
|
271 |
json_output["paraphrased_versions"].append({
|
272 |
f"original_sentence_{i+1}": sentence,
|
273 |
-
"paraphrases":
|
274 |
})
|
275 |
|
276 |
-
all_sentence_paraphrases.append(
|
277 |
formatted_output += "\n"
|
278 |
|
279 |
all_combinations = list(product(*all_sentence_paraphrases))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import json
|
3 |
import gradio as gr
|
4 |
import spaces
|
5 |
import torch
|
6 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification
|
7 |
from sentence_splitter import SentenceSplitter
|
8 |
from itertools import product
|
9 |
|
|
|
15 |
print(f"Using device: {device}")
|
16 |
|
17 |
# Initialize paraphraser model and tokenizer
|
18 |
+
paraphraser_model_name = "Ateeqq/Text-Rewriter-Paraphraser"
|
19 |
+
paraphraser_tokenizer = AutoTokenizer.from_pretrained(paraphraser_model_name, token=hf_token)
|
20 |
+
paraphraser_model = AutoModelForSeq2SeqLM.from_pretrained(paraphraser_model_name, token=hf_token).to(device)
|
21 |
|
22 |
# Initialize classifier model and tokenizer
|
23 |
classifier_model_name = "andreas122001/roberta-mixed-detector"
|
|
|
43 |
all_sentence_paraphrases = []
|
44 |
|
45 |
if setting == 1:
|
46 |
+
temperature = 0.6
|
47 |
+
num_beams = 2
|
48 |
elif setting == 2:
|
49 |
+
temperature = 0.7
|
50 |
+
num_beams = 3
|
51 |
elif setting == 3:
|
52 |
+
temperature = 0.8
|
53 |
+
num_beams = 4
|
54 |
elif setting == 4:
|
55 |
+
temperature = 0.9
|
56 |
+
num_beams = 5
|
57 |
else:
|
58 |
+
temperature = 1.0
|
59 |
+
num_beams = 6
|
60 |
|
61 |
num_return_sequences = 5
|
62 |
+
max_length = 64
|
63 |
|
64 |
formatted_output = "Original text:\n" + text + "\n\n"
|
65 |
formatted_output += "Paraphrased versions:\n"
|
|
|
72 |
}
|
73 |
|
74 |
for i, sentence in enumerate(sentences):
|
75 |
+
inputs = paraphraser_tokenizer(f'paraphraser: {sentence}', return_tensors="pt", padding="longest", truncation=True, max_length=max_length).input_ids.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
# Generate paraphrases
|
78 |
outputs = paraphraser_model.generate(
|
79 |
+
inputs,
|
80 |
+
num_beams=num_beams,
|
81 |
+
num_beam_groups=num_beams,
|
|
|
82 |
num_return_sequences=num_return_sequences,
|
83 |
+
repetition_penalty=10.0,
|
84 |
+
diversity_penalty=3.0,
|
85 |
no_repeat_ngram_size=2,
|
86 |
+
temperature=temperature,
|
87 |
+
max_length=max_length
|
88 |
)
|
89 |
|
90 |
paraphrases = paraphraser_tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
91 |
|
|
|
|
|
|
|
92 |
formatted_output += f"Original sentence {i+1}: {sentence}\n"
|
93 |
+
for j, paraphrase in enumerate(paraphrases, 1):
|
94 |
formatted_output += f" Paraphrase {j}: {paraphrase}\n"
|
95 |
|
96 |
json_output["paraphrased_versions"].append({
|
97 |
f"original_sentence_{i+1}": sentence,
|
98 |
+
"paraphrases": paraphrases
|
99 |
})
|
100 |
|
101 |
+
all_sentence_paraphrases.append(paraphrases)
|
102 |
formatted_output += "\n"
|
103 |
|
104 |
all_combinations = list(product(*all_sentence_paraphrases))
|