Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
# ืืืขื ืืช ืืืืื ืื-tokenizer | |
tokenizer = AutoTokenizer.from_pretrained('dicta-il/dictalm-7b-instruct') | |
model = AutoModelForCausalLM.from_pretrained('dicta-il/dictalm-7b-instruct', trust_remote_code=True).cuda() | |
# ืืืืจืช ืืคืื ืงืฆืื ืืฆ'ืื ืขื ืืืืื | |
def chat_with_model(prompt): | |
model.eval() | |
with torch.inference_mode(): | |
kwargs = dict( | |
inputs=tokenizer(prompt, return_tensors='pt').input_ids.to(model.device), | |
do_sample=True, | |
top_k=50, | |
top_p=0.95, | |
temperature=0.75, | |
max_length=100, | |
min_new_tokens=5 | |
) | |
output = model.generate(**kwargs) | |
response_text = tokenizer.batch_decode(output, skip_special_tokens=True)[0] | |
return response_text | |
# ืืฆืืจืช ืืืฉืง ืขื Gradio | |
interface = gr.Interface(fn=chat_with_model, inputs="text", outputs="text", title="Chat with DictaLM Model") | |
interface.launch() | |