Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
import torch
|
5 |
+
|
6 |
+
# 讟讜注谉 讗转 讛诪讜讚诇 讜讛-tokenizer
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained('dicta-il/dictalm-7b-instruct')
|
8 |
+
model = AutoModelForCausalLM.from_pretrained('dicta-il/dictalm-7b-instruct', trust_remote_code=True).cuda()
|
9 |
+
|
10 |
+
# 讛讙讚专转 讛驻讜谞拽爪讬讛 诇爪'讗讟 注诐 讛诪讜讚诇
|
11 |
+
def chat_with_model(prompt):
|
12 |
+
model.eval()
|
13 |
+
with torch.inference_mode():
|
14 |
+
kwargs = dict(
|
15 |
+
inputs=tokenizer(prompt, return_tensors='pt').input_ids.to(model.device),
|
16 |
+
do_sample=True,
|
17 |
+
top_k=50,
|
18 |
+
top_p=0.95,
|
19 |
+
temperature=0.75,
|
20 |
+
max_length=100,
|
21 |
+
min_new_tokens=5
|
22 |
+
)
|
23 |
+
output = model.generate(**kwargs)
|
24 |
+
response_text = tokenizer.batch_decode(output, skip_special_tokens=True)[0]
|
25 |
+
return response_text
|
26 |
+
|
27 |
+
# 讬爪讬专转 诪诪砖拽 注诐 Gradio
|
28 |
+
interface = gr.Interface(fn=chat_with_model, inputs="text", outputs="text", title="Chat with DictaLM Model")
|
29 |
+
interface.launch()
|