Spaces:
Sleeping
Sleeping
title: VLA Data Generator | |
emoji: 🎬 | |
colorFrom: blue | |
colorTo: purple | |
sdk: docker | |
app_port: 7860 | |
pinned: false | |
license: mit | |
short_description: Generate VLA training data from videos using AI | |
# VLA Data Generator | |
A TypeScript/React application for generating vision-language-action (VLA) training data using Google's Gemini AI. This app allows users to upload videos and generate corresponding action sequences and descriptions for training VLA models. | |
## Technology Stack | |
- **TypeScript** - Type-safe JavaScript development | |
- **React 19** - Modern React with latest features | |
- **Vite** - Fast build tool and development server | |
- **Google Gemini AI** - AI-powered video analysis and action generation | |
## Run Locally | |
**Prerequisites:** Node.js (v20 or higher) | |
1. Install dependencies: | |
```bash | |
npm install | |
``` | |
2. Set up environment variables: | |
Create a `.env.local` file and add your Gemini API key: | |
``` | |
GEMINI_API_KEY=your_gemini_api_key_here | |
``` | |
3. Run the development server: | |
```bash | |
npm run dev | |
``` | |
4. Build for production: | |
```bash | |
npm run build | |
``` | |
## Deploy to Hugging Face Spaces | |
This application can be deployed to Hugging Face Spaces using Docker. | |
### Using the Dockerfile | |
1. Ensure your `GEMINI_API_KEY` is set as a secret in your Hugging Face Space settings | |
2. The included Dockerfile will handle the build and deployment process | |
3. The app will be accessible on port 7860 (Hugging Face Spaces default) | |
### Manual Deployment Steps | |
1. Fork or upload this repository to Hugging Face Spaces | |
2. Select "Docker" as the SDK | |
3. Add your `GEMINI_API_KEY` as a secret in the Space settings | |
4. The Space will automatically build and deploy using the provided Dockerfile | |