NightPrince's picture
Update app.py
30f66dd verified
# filename: elegant_arabic_transcriber.py
import streamlit as st
import nemo.collections.asr as nemo_asr
import soundfile as sf
import tempfile
import os
from pydub import AudioSegment
import time
# Custom CSS for gloomy elegant styling
st.markdown("""
<style>
:root {
--primary: #3a506b;
--secondary: #5bc0be;
--accent: #e55934;
--background: #1c2541;
--card: #0b132b;
--text: #e0e0e0;
--text-secondary: #b8b8b8;
}
.stApp {
background-color: var(--background);
color: var(--text);
}
.main .block-container {
max-width: 1200px;
padding: 2rem 3rem;
}
.card {
background-color: var(--card);
border-radius: 8px;
padding: 1.5rem;
margin-bottom: 1.5rem;
border-left: 3px solid var(--secondary);
}
.header {
background: linear-gradient(135deg, #0b132b, #1c2541);
color: white;
padding: 2rem 3rem;
margin: -2rem -3rem 2rem -3rem;
border-bottom: 1px solid rgba(91, 192, 190, 0.2);
}
.stButton>button {
background: var(--primary);
color: white;
border: none;
border-radius: 6px;
padding: 0.7rem 1.5rem;
font-weight: 500;
transition: all 0.2s ease;
border: 1px solid rgba(91, 192, 190, 0.3);
}
.stButton>button:hover {
background: #2c3e5a;
color: white;
}
.stDownloadButton>button {
background: var(--secondary);
color: #0b132b;
}
.stDownloadButton>button:hover {
background: #4aa8a6;
color: #0b132b;
}
.transcript-container {
background-color: rgba(11, 19, 43, 0.7);
border-radius: 8px;
padding: 1.5rem;
margin-top: 1rem;
border: 1px solid rgba(91, 192, 190, 0.1);
}
.transcript-box {
background-color: transparent;
font-size: 1.1rem;
line-height: 1.8;
min-height: 150px;
direction: rtl;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
color: var(--text);
white-space: pre-wrap;
}
.stats {
display: flex;
gap: 1rem;
margin-top: 1rem;
}
.stat-box {
background-color: rgba(58, 80, 107, 0.5);
padding: 0.8rem 1rem;
border-radius: 6px;
flex: 1;
min-width: 100px;
text-align: center;
border: 1px solid rgba(91, 192, 190, 0.1);
}
.stat-value {
font-size: 1.2rem;
font-weight: bold;
color: var(--secondary);
}
.progress-container {
height: 6px;
background-color: rgba(58, 80, 107, 0.5);
border-radius: 3px;
margin: 1.5rem 0;
overflow: hidden;
}
.progress-bar {
height: 100%;
background: linear-gradient(90deg, var(--secondary), #4aa8a6);
border-radius: 3px;
transition: width 0.4s ease;
}
h1, h2, h3 {
color: var(--text) !important;
}
.file-uploader {
border: 2px dashed var(--secondary);
border-radius: 8px;
padding: 2rem;
text-align: center;
background-color: rgba(91, 192, 190, 0.05);
margin-bottom: 1.5rem;
}
.feature-icon {
color: var(--secondary);
margin-right: 0.5rem;
}
.stSpinner > div {
border-color: var(--secondary) transparent transparent transparent !important;
}
</style>
""", unsafe_allow_html=True)
SUPPORTED_TYPES = ['wav', 'mp3', 'ogg', 'flac', 'm4a']
# Load NeMo model once
@st.cache_resource
def load_model():
model = nemo_asr.models.EncDecHybridRNNTCTCBPEModel.from_pretrained(
model_name="nvidia/stt_ar_fastconformer_hybrid_large_pcd_v1.0"
)
return model
model = load_model()
# Helper: Convert any audio to 16kHz mono WAV
def convert_audio(uploaded_file, target_sample_rate=16000):
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_out:
audio = AudioSegment.from_file(uploaded_file)
audio = audio.set_frame_rate(target_sample_rate).set_channels(1)
audio.export(tmp_out.name, format="wav")
return tmp_out.name
# App UI
st.markdown("""
<div class="header">
<h1 style="margin-bottom: 0.5rem;">Arabic Transcriber</h1>
<p style="color: var(--text-secondary); margin-top: 0;">Convert speech to text with precision</p>
</div>
""", unsafe_allow_html=True)
# Main content - single wide column layout
st.markdown("""
<div class="card">
<div style="display: flex; gap: 1rem; margin-bottom: 1rem;">
<span class="feature-icon">🔊</span>
<span>Supports WAV, MP3, OGG, FLAC, M4A</span>
</div>
<div style="display: flex; gap: 1rem; margin-bottom: 1rem;">
<span class="feature-icon">⚡</span>
<span>Fast processing with advanced AI</span>
</div>
</div>
""", unsafe_allow_html=True)
uploaded_file = st.file_uploader("Drag and drop audio file here", type=SUPPORTED_TYPES)
if uploaded_file is not None:
# Convert to 16kHz mono wav
with st.spinner("Preparing audio for transcription..."):
processed_wav = convert_audio(uploaded_file)
# Show audio info
data, sample_rate = sf.read(processed_wav)
channels = 1 if len(data.shape) == 1 else data.shape[1]
duration = len(data) / sample_rate
# Show audio player and info
st.audio(processed_wav, format="audio/wav")
st.markdown("### Audio Details")
st.markdown("""
<div class="stats">
<div class="stat-box">
<div>Duration</div>
<div class="stat-value">{:.1f}s</div>
</div>
<div class="stat-box">
<div>Sample Rate</div>
<div class="stat-value">{} Hz</div>
</div>
<div class="stat-box">
<div>Channels</div>
<div class="stat-value">{}</div>
</div>
</div>
""".format(duration, sample_rate, channels), unsafe_allow_html=True)
# Transcription
if st.button("Transcribe Audio", type="primary"):
# Create a progress container
progress_container = st.empty()
progress_container.markdown("""
<div class="progress-container">
<div class="progress-bar" style="width: 30%;"></div>
</div>
<div style="text-align: center; margin-top: 5px; color: var(--secondary);">Processing audio...</div>
""", unsafe_allow_html=True)
time.sleep(0.8)
progress_container.markdown("""
<div class="progress-container">
<div class="progress-bar" style="width: 70%;"></div>
</div>
<div style="text-align: center; margin-top: 5px; color: var(--secondary);">Transcribing content...</div>
""", unsafe_allow_html=True)
# Actual transcription
with st.spinner(""):
result = model.transcribe([processed_wav])
transcript = result[0].text
# Update progress to complete
progress_container.markdown("""
<div class="progress-container">
<div class="progress-bar" style="width: 100%;"></div>
</div>
<div style="text-align: center; margin-top: 5px; color: var(--secondary);">Transcription complete</div>
""", unsafe_allow_html=True)
time.sleep(0.5)
progress_container.empty()
st.markdown("### Transcription Results")
st.markdown(f"""
<div class="transcript-container">
<div class="transcript-box">{transcript}</div>
</div>
""", unsafe_allow_html=True)
# Download button
st.download_button("Download Transcript", transcript,
file_name="arabic_transcript.txt")
# Cleanup
os.remove(processed_wav)
# Minimal footer
st.markdown("---")
st.markdown("""
<div style="text-align: center; color: var(--text-secondary); padding: 20px; font-size: 0.9rem;">
<p>Powered by NeMo ASR and Streamlit | Professional Arabic Transcription Service</p>
<p>©NightPrince | 2025 Arabic Transcriber Pro | All rights reserved</p>
</div>
""", unsafe_allow_html=True)