File size: 9,056 Bytes
df7af7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30f66dd
df7af7d
30f66dd
 
 
df7af7d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
# filename: elegant_arabic_transcriber.py

import streamlit as st
import nemo.collections.asr as nemo_asr
import soundfile as sf
import tempfile
import os
from pydub import AudioSegment
import time

# Custom CSS for gloomy elegant styling
st.markdown("""
    <style>
        :root {
            --primary: #3a506b;
            --secondary: #5bc0be;
            --accent: #e55934;
            --background: #1c2541;
            --card: #0b132b;
            --text: #e0e0e0;
            --text-secondary: #b8b8b8;
        }
        
        .stApp {
            background-color: var(--background);
            color: var(--text);
        }
        
        .main .block-container {
            max-width: 1200px;
            padding: 2rem 3rem;
        }
        
        .card {
            background-color: var(--card);
            border-radius: 8px;
            padding: 1.5rem;
            margin-bottom: 1.5rem;
            border-left: 3px solid var(--secondary);
        }
        
        .header {
            background: linear-gradient(135deg, #0b132b, #1c2541);
            color: white;
            padding: 2rem 3rem;
            margin: -2rem -3rem 2rem -3rem;
            border-bottom: 1px solid rgba(91, 192, 190, 0.2);
        }
        
        .stButton>button {
            background: var(--primary);
            color: white;
            border: none;
            border-radius: 6px;
            padding: 0.7rem 1.5rem;
            font-weight: 500;
            transition: all 0.2s ease;
            border: 1px solid rgba(91, 192, 190, 0.3);
        }
        
        .stButton>button:hover {
            background: #2c3e5a;
            color: white;
        }
        
        .stDownloadButton>button {
            background: var(--secondary);
            color: #0b132b;
        }
        
        .stDownloadButton>button:hover {
            background: #4aa8a6;
            color: #0b132b;
        }
        
        .transcript-container {
            background-color: rgba(11, 19, 43, 0.7);
            border-radius: 8px;
            padding: 1.5rem;
            margin-top: 1rem;
            border: 1px solid rgba(91, 192, 190, 0.1);
        }
        
        .transcript-box {
            background-color: transparent;
            font-size: 1.1rem;
            line-height: 1.8;
            min-height: 150px;
            direction: rtl;
            font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
            color: var(--text);
            white-space: pre-wrap;
        }
        
        .stats {
            display: flex;
            gap: 1rem;
            margin-top: 1rem;
        }
        
        .stat-box {
            background-color: rgba(58, 80, 107, 0.5);
            padding: 0.8rem 1rem;
            border-radius: 6px;
            flex: 1;
            min-width: 100px;
            text-align: center;
            border: 1px solid rgba(91, 192, 190, 0.1);
        }
        
        .stat-value {
            font-size: 1.2rem;
            font-weight: bold;
            color: var(--secondary);
        }
        
        .progress-container {
            height: 6px;
            background-color: rgba(58, 80, 107, 0.5);
            border-radius: 3px;
            margin: 1.5rem 0;
            overflow: hidden;
        }
        
        .progress-bar {
            height: 100%;
            background: linear-gradient(90deg, var(--secondary), #4aa8a6);
            border-radius: 3px;
            transition: width 0.4s ease;
        }
        
        h1, h2, h3 {
            color: var(--text) !important;
        }
        
        .file-uploader {
            border: 2px dashed var(--secondary);
            border-radius: 8px;
            padding: 2rem;
            text-align: center;
            background-color: rgba(91, 192, 190, 0.05);
            margin-bottom: 1.5rem;
        }
        
        .feature-icon {
            color: var(--secondary);
            margin-right: 0.5rem;
        }
        
        .stSpinner > div {
            border-color: var(--secondary) transparent transparent transparent !important;
        }
    </style>
""", unsafe_allow_html=True)

SUPPORTED_TYPES = ['wav', 'mp3', 'ogg', 'flac', 'm4a']

# Load NeMo model once
@st.cache_resource
def load_model():
    model = nemo_asr.models.EncDecHybridRNNTCTCBPEModel.from_pretrained(
        model_name="nvidia/stt_ar_fastconformer_hybrid_large_pcd_v1.0"
    )
    return model

model = load_model()

# Helper: Convert any audio to 16kHz mono WAV
def convert_audio(uploaded_file, target_sample_rate=16000):
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_out:
        audio = AudioSegment.from_file(uploaded_file)
        audio = audio.set_frame_rate(target_sample_rate).set_channels(1)
        audio.export(tmp_out.name, format="wav")
        return tmp_out.name

# App UI
st.markdown("""
    <div class="header">
        <h1 style="margin-bottom: 0.5rem;">Arabic Transcriber</h1>
        <p style="color: var(--text-secondary); margin-top: 0;">Convert speech to text with precision</p>
    </div>
""", unsafe_allow_html=True)

# Main content - single wide column layout
st.markdown("""
    <div class="card">
        <div style="display: flex; gap: 1rem; margin-bottom: 1rem;">
            <span class="feature-icon">🔊</span>
            <span>Supports WAV, MP3, OGG, FLAC, M4A</span>
        </div>
        <div style="display: flex; gap: 1rem; margin-bottom: 1rem;">
            <span class="feature-icon">⚡</span>
            <span>Fast processing with advanced AI</span>
        </div>
    </div>
""", unsafe_allow_html=True)

uploaded_file = st.file_uploader("Drag and drop audio file here", type=SUPPORTED_TYPES)

if uploaded_file is not None:
    # Convert to 16kHz mono wav
    with st.spinner("Preparing audio for transcription..."):
        processed_wav = convert_audio(uploaded_file)
    
    # Show audio info
    data, sample_rate = sf.read(processed_wav)
    channels = 1 if len(data.shape) == 1 else data.shape[1]
    duration = len(data) / sample_rate
    
    # Show audio player and info
    st.audio(processed_wav, format="audio/wav")
    
    st.markdown("### Audio Details")
    st.markdown("""
        <div class="stats">
            <div class="stat-box">
                <div>Duration</div>
                <div class="stat-value">{:.1f}s</div>
            </div>
            <div class="stat-box">
                <div>Sample Rate</div>
                <div class="stat-value">{} Hz</div>
            </div>
            <div class="stat-box">
                <div>Channels</div>
                <div class="stat-value">{}</div>
            </div>
        </div>
    """.format(duration, sample_rate, channels), unsafe_allow_html=True)
    
    # Transcription
    if st.button("Transcribe Audio", type="primary"):
        # Create a progress container
        progress_container = st.empty()
        progress_container.markdown("""
            <div class="progress-container">
                <div class="progress-bar" style="width: 30%;"></div>
            </div>
            <div style="text-align: center; margin-top: 5px; color: var(--secondary);">Processing audio...</div>
        """, unsafe_allow_html=True)
        
        time.sleep(0.8)
        progress_container.markdown("""
            <div class="progress-container">
                <div class="progress-bar" style="width: 70%;"></div>
            </div>
            <div style="text-align: center; margin-top: 5px; color: var(--secondary);">Transcribing content...</div>
        """, unsafe_allow_html=True)
        
        # Actual transcription
        with st.spinner(""):
            result = model.transcribe([processed_wav])
            transcript = result[0].text
        
        # Update progress to complete
        progress_container.markdown("""
            <div class="progress-container">
                <div class="progress-bar" style="width: 100%;"></div>
            </div>
            <div style="text-align: center; margin-top: 5px; color: var(--secondary);">Transcription complete</div>
        """, unsafe_allow_html=True)
        
        time.sleep(0.5)
        progress_container.empty()
        
        st.markdown("### Transcription Results")
        st.markdown(f"""
            <div class="transcript-container">
                <div class="transcript-box">{transcript}</div>
            </div>
        """, unsafe_allow_html=True)
        
        # Download button
        st.download_button("Download Transcript", transcript, 
                          file_name="arabic_transcript.txt")
        
        # Cleanup
        os.remove(processed_wav)

# Minimal footer
st.markdown("---")
st.markdown("""
    <div style="text-align: center; color: var(--text-secondary); padding: 20px; font-size: 0.9rem;">
        <p>Powered by NeMo ASR and Streamlit | Professional Arabic Transcription Service</p>
        <p>©NightPrince | 2025 Arabic Transcriber Pro | All rights reserved</p>
    </div>
""", unsafe_allow_html=True)