File size: 9,056 Bytes
df7af7d 30f66dd df7af7d 30f66dd df7af7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
# filename: elegant_arabic_transcriber.py
import streamlit as st
import nemo.collections.asr as nemo_asr
import soundfile as sf
import tempfile
import os
from pydub import AudioSegment
import time
# Custom CSS for gloomy elegant styling
st.markdown("""
<style>
:root {
--primary: #3a506b;
--secondary: #5bc0be;
--accent: #e55934;
--background: #1c2541;
--card: #0b132b;
--text: #e0e0e0;
--text-secondary: #b8b8b8;
}
.stApp {
background-color: var(--background);
color: var(--text);
}
.main .block-container {
max-width: 1200px;
padding: 2rem 3rem;
}
.card {
background-color: var(--card);
border-radius: 8px;
padding: 1.5rem;
margin-bottom: 1.5rem;
border-left: 3px solid var(--secondary);
}
.header {
background: linear-gradient(135deg, #0b132b, #1c2541);
color: white;
padding: 2rem 3rem;
margin: -2rem -3rem 2rem -3rem;
border-bottom: 1px solid rgba(91, 192, 190, 0.2);
}
.stButton>button {
background: var(--primary);
color: white;
border: none;
border-radius: 6px;
padding: 0.7rem 1.5rem;
font-weight: 500;
transition: all 0.2s ease;
border: 1px solid rgba(91, 192, 190, 0.3);
}
.stButton>button:hover {
background: #2c3e5a;
color: white;
}
.stDownloadButton>button {
background: var(--secondary);
color: #0b132b;
}
.stDownloadButton>button:hover {
background: #4aa8a6;
color: #0b132b;
}
.transcript-container {
background-color: rgba(11, 19, 43, 0.7);
border-radius: 8px;
padding: 1.5rem;
margin-top: 1rem;
border: 1px solid rgba(91, 192, 190, 0.1);
}
.transcript-box {
background-color: transparent;
font-size: 1.1rem;
line-height: 1.8;
min-height: 150px;
direction: rtl;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
color: var(--text);
white-space: pre-wrap;
}
.stats {
display: flex;
gap: 1rem;
margin-top: 1rem;
}
.stat-box {
background-color: rgba(58, 80, 107, 0.5);
padding: 0.8rem 1rem;
border-radius: 6px;
flex: 1;
min-width: 100px;
text-align: center;
border: 1px solid rgba(91, 192, 190, 0.1);
}
.stat-value {
font-size: 1.2rem;
font-weight: bold;
color: var(--secondary);
}
.progress-container {
height: 6px;
background-color: rgba(58, 80, 107, 0.5);
border-radius: 3px;
margin: 1.5rem 0;
overflow: hidden;
}
.progress-bar {
height: 100%;
background: linear-gradient(90deg, var(--secondary), #4aa8a6);
border-radius: 3px;
transition: width 0.4s ease;
}
h1, h2, h3 {
color: var(--text) !important;
}
.file-uploader {
border: 2px dashed var(--secondary);
border-radius: 8px;
padding: 2rem;
text-align: center;
background-color: rgba(91, 192, 190, 0.05);
margin-bottom: 1.5rem;
}
.feature-icon {
color: var(--secondary);
margin-right: 0.5rem;
}
.stSpinner > div {
border-color: var(--secondary) transparent transparent transparent !important;
}
</style>
""", unsafe_allow_html=True)
SUPPORTED_TYPES = ['wav', 'mp3', 'ogg', 'flac', 'm4a']
# Load NeMo model once
@st.cache_resource
def load_model():
model = nemo_asr.models.EncDecHybridRNNTCTCBPEModel.from_pretrained(
model_name="nvidia/stt_ar_fastconformer_hybrid_large_pcd_v1.0"
)
return model
model = load_model()
# Helper: Convert any audio to 16kHz mono WAV
def convert_audio(uploaded_file, target_sample_rate=16000):
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_out:
audio = AudioSegment.from_file(uploaded_file)
audio = audio.set_frame_rate(target_sample_rate).set_channels(1)
audio.export(tmp_out.name, format="wav")
return tmp_out.name
# App UI
st.markdown("""
<div class="header">
<h1 style="margin-bottom: 0.5rem;">Arabic Transcriber</h1>
<p style="color: var(--text-secondary); margin-top: 0;">Convert speech to text with precision</p>
</div>
""", unsafe_allow_html=True)
# Main content - single wide column layout
st.markdown("""
<div class="card">
<div style="display: flex; gap: 1rem; margin-bottom: 1rem;">
<span class="feature-icon">🔊</span>
<span>Supports WAV, MP3, OGG, FLAC, M4A</span>
</div>
<div style="display: flex; gap: 1rem; margin-bottom: 1rem;">
<span class="feature-icon">⚡</span>
<span>Fast processing with advanced AI</span>
</div>
</div>
""", unsafe_allow_html=True)
uploaded_file = st.file_uploader("Drag and drop audio file here", type=SUPPORTED_TYPES)
if uploaded_file is not None:
# Convert to 16kHz mono wav
with st.spinner("Preparing audio for transcription..."):
processed_wav = convert_audio(uploaded_file)
# Show audio info
data, sample_rate = sf.read(processed_wav)
channels = 1 if len(data.shape) == 1 else data.shape[1]
duration = len(data) / sample_rate
# Show audio player and info
st.audio(processed_wav, format="audio/wav")
st.markdown("### Audio Details")
st.markdown("""
<div class="stats">
<div class="stat-box">
<div>Duration</div>
<div class="stat-value">{:.1f}s</div>
</div>
<div class="stat-box">
<div>Sample Rate</div>
<div class="stat-value">{} Hz</div>
</div>
<div class="stat-box">
<div>Channels</div>
<div class="stat-value">{}</div>
</div>
</div>
""".format(duration, sample_rate, channels), unsafe_allow_html=True)
# Transcription
if st.button("Transcribe Audio", type="primary"):
# Create a progress container
progress_container = st.empty()
progress_container.markdown("""
<div class="progress-container">
<div class="progress-bar" style="width: 30%;"></div>
</div>
<div style="text-align: center; margin-top: 5px; color: var(--secondary);">Processing audio...</div>
""", unsafe_allow_html=True)
time.sleep(0.8)
progress_container.markdown("""
<div class="progress-container">
<div class="progress-bar" style="width: 70%;"></div>
</div>
<div style="text-align: center; margin-top: 5px; color: var(--secondary);">Transcribing content...</div>
""", unsafe_allow_html=True)
# Actual transcription
with st.spinner(""):
result = model.transcribe([processed_wav])
transcript = result[0].text
# Update progress to complete
progress_container.markdown("""
<div class="progress-container">
<div class="progress-bar" style="width: 100%;"></div>
</div>
<div style="text-align: center; margin-top: 5px; color: var(--secondary);">Transcription complete</div>
""", unsafe_allow_html=True)
time.sleep(0.5)
progress_container.empty()
st.markdown("### Transcription Results")
st.markdown(f"""
<div class="transcript-container">
<div class="transcript-box">{transcript}</div>
</div>
""", unsafe_allow_html=True)
# Download button
st.download_button("Download Transcript", transcript,
file_name="arabic_transcript.txt")
# Cleanup
os.remove(processed_wav)
# Minimal footer
st.markdown("---")
st.markdown("""
<div style="text-align: center; color: var(--text-secondary); padding: 20px; font-size: 0.9rem;">
<p>Powered by NeMo ASR and Streamlit | Professional Arabic Transcription Service</p>
<p>©NightPrince | 2025 Arabic Transcriber Pro | All rights reserved</p>
</div>
""", unsafe_allow_html=True) |