Spaces:
Runtime error
Runtime error
import gradio as gr | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.metrics.pairwise import cosine_similarity | |
from nltk import word_tokenize | |
from nltk.stem import WordNetLemmatizer | |
from nltk.corpus import stopwords | |
import nltk | |
import json | |
from typing import List, Dict, Any | |
# Download NLTK resources | |
nltk.download('punkt') | |
nltk.download('wordnet') | |
nltk.download('stopwords') | |
def preprocess(sentence: str) -> str: | |
""" | |
Preprocesses a given sentence by converting to lowercase, tokenizing, lemmatizing, and removing stopwords. | |
Parameters: | |
sentence (str): The input sentence to be preprocessed. | |
Returns: | |
str: The preprocessed sentence. | |
""" | |
lemmatizer = WordNetLemmatizer() | |
stop_words = set(stopwords.words('english')) | |
tokens = word_tokenize(sentence.lower()) | |
tokens = [lemmatizer.lemmatize(word) for word in tokens if word.isalnum()] | |
tokens = [word for word in tokens if word not in stop_words] | |
return ' '.join(tokens) | |
def calculate_fx(sentence: str, candidates: List[str], threshold: float = 0.15) -> List[Dict[str, Any]]: | |
""" | |
Calculates the similarity scores between the input sentence and a list of candidate sentences. | |
Parameters: | |
sentence (str): The input sentence. | |
candidates (List[str]): List of candidate sentences. | |
threshold (float, optional): Threshold value for considering a sentence similar. Defaults to 0.15. | |
Returns: | |
List[Dict[str, Any]]: List of dictionaries containing similar sentences and their similarity scores. | |
""" | |
input_bits = preprocess(sentence) | |
chunks = [preprocess(candidate) for candidate in candidates] | |
vectorizer = TfidfVectorizer() | |
vectors = vectorizer.fit_transform([input_bits] + chunks) | |
f_scores = cosine_similarity(vectors[0:1], vectors[1:]).flatten() | |
similar_chunks = [] | |
for i, score in enumerate(f_scores): | |
if score >= threshold: | |
similar_chunks.append({"sentence": candidates[i], "f(score)": round(score, 4)}) | |
return similar_chunks | |
def read_sentences_from_file(file_location: str) -> List[str]: | |
""" | |
Reads sentences from a text file located at the given location. | |
Parameters: | |
file_location (str): Location of the text file. | |
Returns: | |
List[str]: List of sentences read from the file. | |
""" | |
with open(file_location, 'r') as file: | |
text = file.read().replace('\n', ' ') | |
sentences = [sentence.strip() for sentence in text.split('.') if sentence.strip()] | |
return sentences | |
def fetch_vectors(file: Any, sentence: str) -> str: | |
""" | |
Fetches similar sentences from a text file for a given input sentence. | |
Parameters: | |
file (Any): File uploaded by the user. | |
sentence (str): Input sentence. | |
Returns: | |
str: JSON string containing similar sentences and their similarity scores. | |
""" | |
file_location = file.name | |
chunks = read_sentences_from_file(file_location) | |
similar_chunks = calculate_fx(sentence, chunks, threshold=0.15) | |
return json.dumps(similar_chunks, indent=4) | |
# Interface | |
file_uploader = gr.File(label="Upload a .txt file") | |
text_input = gr.Textbox(label="Enter question") | |
output_text = gr.Textbox(label="Output") | |
iface = gr.Interface( | |
fn=fetch_vectors, | |
inputs=[file_uploader, text_input], | |
outputs=output_text, | |
title="Minimal RAG - For QA (Super Fast/Modeless)", | |
description="Fastest Minimal Rag for Question Answer, calculating cosine similarities and vectorizing using scikit-learn's TfidfVectorizer." | |
) | |
iface.launch(debug=True) | |