Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -6,13 +6,23 @@ from nltk.stem import WordNetLemmatizer
|
|
6 |
from nltk.corpus import stopwords
|
7 |
import nltk
|
8 |
import json
|
|
|
9 |
|
10 |
# Download NLTK resources
|
11 |
nltk.download('punkt')
|
12 |
nltk.download('wordnet')
|
13 |
nltk.download('stopwords')
|
14 |
|
15 |
-
def preprocess(sentence):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
lemmatizer = WordNetLemmatizer()
|
17 |
stop_words = set(stopwords.words('english'))
|
18 |
tokens = word_tokenize(sentence.lower())
|
@@ -20,45 +30,75 @@ def preprocess(sentence):
|
|
20 |
tokens = [word for word in tokens if word not in stop_words]
|
21 |
return ' '.join(tokens)
|
22 |
|
23 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
input_bits = preprocess(sentence)
|
25 |
chunks = [preprocess(candidate) for candidate in candidates]
|
26 |
|
27 |
vectorizer = TfidfVectorizer()
|
28 |
vectors = vectorizer.fit_transform([input_bits] + chunks)
|
29 |
|
30 |
-
|
31 |
|
32 |
-
|
33 |
-
for i, score in enumerate(
|
34 |
if score >= threshold:
|
35 |
-
|
36 |
|
37 |
-
return
|
38 |
|
39 |
-
def read_sentences_from_file(file_location):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
with open(file_location, 'r') as file:
|
41 |
text = file.read().replace('\n', ' ')
|
42 |
sentences = [sentence.strip() for sentence in text.split('.') if sentence.strip()]
|
43 |
return sentences
|
44 |
|
45 |
-
def fetch_vectors(file, sentence):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
file_location = file.name
|
47 |
chunks = read_sentences_from_file(file_location)
|
48 |
-
|
49 |
-
return json.dumps(
|
50 |
|
51 |
# Interface
|
52 |
file_uploader = gr.File(label="Upload a .txt file")
|
53 |
-
text_input = gr.Textbox(label="Enter
|
54 |
-
output_text = gr.Textbox(label="
|
55 |
|
56 |
iface = gr.Interface(
|
57 |
fn=fetch_vectors,
|
58 |
inputs=[file_uploader, text_input],
|
59 |
outputs=output_text,
|
60 |
title="Minimal RAG - For QA (Super Fast/Modeless)",
|
61 |
-
description="
|
62 |
)
|
63 |
|
64 |
-
iface.launch(debug=True)
|
|
|
6 |
from nltk.corpus import stopwords
|
7 |
import nltk
|
8 |
import json
|
9 |
+
from typing import List, Dict, Any
|
10 |
|
11 |
# Download NLTK resources
|
12 |
nltk.download('punkt')
|
13 |
nltk.download('wordnet')
|
14 |
nltk.download('stopwords')
|
15 |
|
16 |
+
def preprocess(sentence: str) -> str:
|
17 |
+
"""
|
18 |
+
Preprocesses a given sentence by converting to lowercase, tokenizing, lemmatizing, and removing stopwords.
|
19 |
+
|
20 |
+
Parameters:
|
21 |
+
sentence (str): The input sentence to be preprocessed.
|
22 |
+
|
23 |
+
Returns:
|
24 |
+
str: The preprocessed sentence.
|
25 |
+
"""
|
26 |
lemmatizer = WordNetLemmatizer()
|
27 |
stop_words = set(stopwords.words('english'))
|
28 |
tokens = word_tokenize(sentence.lower())
|
|
|
30 |
tokens = [word for word in tokens if word not in stop_words]
|
31 |
return ' '.join(tokens)
|
32 |
|
33 |
+
def calculate_fx(sentence: str, candidates: List[str], threshold: float = 0.15) -> List[Dict[str, Any]]:
|
34 |
+
"""
|
35 |
+
Calculates the similarity scores between the input sentence and a list of candidate sentences.
|
36 |
+
|
37 |
+
Parameters:
|
38 |
+
sentence (str): The input sentence.
|
39 |
+
candidates (List[str]): List of candidate sentences.
|
40 |
+
threshold (float, optional): Threshold value for considering a sentence similar. Defaults to 0.15.
|
41 |
+
|
42 |
+
Returns:
|
43 |
+
List[Dict[str, Any]]: List of dictionaries containing similar sentences and their similarity scores.
|
44 |
+
"""
|
45 |
input_bits = preprocess(sentence)
|
46 |
chunks = [preprocess(candidate) for candidate in candidates]
|
47 |
|
48 |
vectorizer = TfidfVectorizer()
|
49 |
vectors = vectorizer.fit_transform([input_bits] + chunks)
|
50 |
|
51 |
+
f_scores = cosine_similarity(vectors[0:1], vectors[1:]).flatten()
|
52 |
|
53 |
+
similar_chunks = []
|
54 |
+
for i, score in enumerate(f_scores):
|
55 |
if score >= threshold:
|
56 |
+
similar_chunks.append({"sentence": candidates[i], "f(score)": round(score, 4)})
|
57 |
|
58 |
+
return similar_chunks
|
59 |
|
60 |
+
def read_sentences_from_file(file_location: str) -> List[str]:
|
61 |
+
"""
|
62 |
+
Reads sentences from a text file located at the given location.
|
63 |
+
|
64 |
+
Parameters:
|
65 |
+
file_location (str): Location of the text file.
|
66 |
+
|
67 |
+
Returns:
|
68 |
+
List[str]: List of sentences read from the file.
|
69 |
+
"""
|
70 |
with open(file_location, 'r') as file:
|
71 |
text = file.read().replace('\n', ' ')
|
72 |
sentences = [sentence.strip() for sentence in text.split('.') if sentence.strip()]
|
73 |
return sentences
|
74 |
|
75 |
+
def fetch_vectors(file: Any, sentence: str) -> str:
|
76 |
+
"""
|
77 |
+
Fetches similar sentences from a text file for a given input sentence.
|
78 |
+
|
79 |
+
Parameters:
|
80 |
+
file (Any): File uploaded by the user.
|
81 |
+
sentence (str): Input sentence.
|
82 |
+
|
83 |
+
Returns:
|
84 |
+
str: JSON string containing similar sentences and their similarity scores.
|
85 |
+
"""
|
86 |
file_location = file.name
|
87 |
chunks = read_sentences_from_file(file_location)
|
88 |
+
similar_chunks = calculate_fx(sentence, chunks, threshold=0.15)
|
89 |
+
return json.dumps(similar_chunks, indent=4)
|
90 |
|
91 |
# Interface
|
92 |
file_uploader = gr.File(label="Upload a .txt file")
|
93 |
+
text_input = gr.Textbox(label="Enter question")
|
94 |
+
output_text = gr.Textbox(label="Output")
|
95 |
|
96 |
iface = gr.Interface(
|
97 |
fn=fetch_vectors,
|
98 |
inputs=[file_uploader, text_input],
|
99 |
outputs=output_text,
|
100 |
title="Minimal RAG - For QA (Super Fast/Modeless)",
|
101 |
+
description="Fastest Minimal Rag for Question Answer, calculating cosine similarities and vectorizing using scikit-learn's TfidfVectorizer."
|
102 |
)
|
103 |
|
104 |
+
iface.launch(debug=True)
|