Spaces:
Running
Running
import math | |
import torch | |
class UniformSampler: | |
def __init__(self, timesteps = 1000): | |
self.timesteps = timesteps | |
def sample(self, batch_size, device): | |
return torch.randint(0, self.timesteps, (batch_size,), device=device) | |
class LogitNormalSampler: | |
def __init__(self, timesteps = 1000, m = 0, s = 1): | |
self.timesteps = timesteps | |
timesteps = torch.linspace(0, 1, timesteps) | |
logit = torch.log(timesteps / (1 - timesteps)) | |
self.prob = torch.exp(-0.5 * (logit - m) ** 2 / s ** 2) / (s * math.sqrt(2 * math.pi)) | |
def sample(self, batch_size, device): | |
return torch.multinomial(self.prob, batch_size, replacement=True).to(device) | |