VibeVoice-Colab / modular /modeling_vibevoice_inference.py
NeuralFalcon's picture
Upload 34 files
909e36b verified
raw
history blame
37.7 kB
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple, Union, Callable
from tqdm import tqdm
import torch
import torch.nn as nn
from transformers.models.auto import AutoModel, AutoModelForCausalLM
from transformers.generation import GenerationMixin, GenerationConfig, LogitsProcessor, LogitsProcessorList, StoppingCriteriaList
from transformers.modeling_outputs import BaseModelOutputWithPast, ModelOutput
from transformers import modeling_utils
from transformers.modeling_utils import PreTrainedModel
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.utils import logging
# from .modular_vibevoice_tokenizer import VibeVoiceTokenizerStreamingCache, VibeVoiceAcousticTokenizerModel, VibeVoiceSemanticTokenizerModel
from .modular_vibevoice_tokenizer import VibeVoiceTokenizerStreamingCache, VibeVoiceTokenizerEncoderOutput
from .modular_vibevoice_diffusion_head import VibeVoiceDiffusionHead
from vibevoice.schedule.dpm_solver import DPMSolverMultistepScheduler
from .configuration_vibevoice import VibeVoiceConfig
from .modular_vibevoice_text_tokenizer import VibeVoiceTextTokenizer, VibeVoiceTextTokenizerFast
from .modeling_vibevoice import VibeVoiceModel, VibeVoicePreTrainedModel
from .streamer import AudioStreamer, AsyncAudioStreamer
logger = logging.get_logger(__name__)
if not hasattr(modeling_utils, "ALL_PARALLEL_STYLES") or modeling_utils.ALL_PARALLEL_STYLES is None:
modeling_utils.ALL_PARALLEL_STYLES = ["tp", "none", "colwise", "rowwise"]
@dataclass
class VibeVoiceCausalLMOutputWithPast(BaseModelOutputWithPast):
logits: Optional[torch.FloatTensor] = None
@dataclass
class VibeVoiceGenerationOutput(ModelOutput):
"""
Output type for VibeVoice generation.
Args:
sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
The generated sequences.
speech_outputs (`List[torch.FloatTensor]`, *optional*):
List of generated speech waveforms or latents for each speech segment.
"""
sequences: torch.LongTensor = None
speech_outputs: Optional[List[torch.FloatTensor]] = None
reach_max_step_sample: Optional[torch.BoolTensor] = None
class VibeVoiceTokenConstraintProcessor(LogitsProcessor):
"""Constrains token generation to only valid tokens during speech generation."""
def __init__(self, valid_token_ids: List[int], device: torch.device = None):
self.valid_token_ids = torch.tensor(valid_token_ids, dtype=torch.long, device=device)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
# Create a mask for valid tokens
mask = torch.full_like(scores, float('-inf'))
mask[:, self.valid_token_ids] = 0
# Apply mask to scores
scores = scores + mask
return scores
class VibeVoiceForConditionalGenerationInference(VibeVoicePreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
def __init__(self, config):
super().__init__(config)
# Initialize the base model
self.model = VibeVoiceModel(config)
# LM head for text generation
self.lm_head = nn.Linear(config.decoder_config.hidden_size, config.decoder_config.vocab_size, bias=False)
# inference configuration
self.ddpm_inference_steps = config.diffusion_head_config.ddpm_num_inference_steps
# Initialize weights and apply final processing
self.post_init()
@property
def noise_scheduler(self):
return self.model.noise_scheduler
@property
def prediction_head(self):
return self.model.prediction_head
@property
def speech_scaling_factor(self):
return self.model.speech_scaling_factor
@property
def speech_bias_factor(self):
return self.model.speech_bias_factor
@property
def acoustic_tokenizer(self):
return self.model.acoustic_tokenizer
@property
def semantic_tokenizer(self):
return self.model.semantic_tokenizer
@property
def acoustic_connector(self):
return self.model.acoustic_connector
@property
def semantic_connector(self):
return self.model.semantic_connector
def tie_weights(self):
"""
Tie the weights between the input embeddings and the output embeddings.
"""
# Tie lm_head.weight to language_model.embed_tokens.weight
if not getattr(self.config, 'tie_word_embeddings', False):
return
if hasattr(self, 'lm_head') and hasattr(self.model.language_model, 'embed_tokens'):
self.lm_head.weight = self.model.language_model.embed_tokens.weight
def get_input_embeddings(self):
return self.model.get_input_embeddings()
def set_input_embeddings(self, value):
self.model.set_input_embeddings(value)
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_speech_tokenizers(self, acoustic_tokenizer=None, semantic_tokenizer=None):
"""Set the speech tokenizers used for encoding and decoding speech."""
self.model.set_speech_tokenizers(acoustic_tokenizer, semantic_tokenizer)
def set_ddpm_inference_steps(self, num_steps=None):
self.ddpm_inference_steps = num_steps or self.config.diffusion_head_config.ddpm_num_inference_steps
def _process_speech_inputs(self, speech_tensors, speech_masks, speech_type="audio"):
"""Process speech inputs through tokenizers and connectors."""
with torch.no_grad():
if speech_type == "audio":
# Encode audio to acoustic latents
encoder_output = self.model.acoustic_tokenizer.encode(speech_tensors.unsqueeze(1))
acoustic_latents = encoder_output.sample(dist_type=self.model.acoustic_tokenizer.std_dist_type)[0]
# Apply scaling and bias
acoustic_features = (acoustic_latents + self.model.speech_bias_factor.to(acoustic_latents.device)) * self.model.speech_scaling_factor.to(acoustic_latents.device)
# Connect to language model space
acoustic_connected = self.model.acoustic_connector(acoustic_features)[speech_masks.cpu()]
return acoustic_features, acoustic_connected
elif speech_type == "pt":
encoder_output = VibeVoiceTokenizerEncoderOutput(mean=speech_tensors, std=self.acoustic_tokenizer.config.fix_std)
acoustic_latents = encoder_output.sample(dist_type=self.model.acoustic_tokenizer.std_dist_type)[0]
# Apply scaling and bias
acoustic_features = (acoustic_latents + self.model.speech_bias_factor.to(acoustic_latents.device)) * self.model.speech_scaling_factor.to(acoustic_latents.device)
# Connect to language model space
acoustic_connected = self.model.acoustic_connector(acoustic_features)[speech_masks.cpu()]
return acoustic_features, acoustic_connected
else:
raise NotImplementedError(f"Speech type {speech_type} not implemented")
# @can_return_tuple
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
speech_tensors: Optional[torch.FloatTensor] = None,
speech_masks: Optional[torch.BoolTensor] = None,
speech_input_mask: Optional[torch.BoolTensor] = None,
logits_to_keep: Union[int, slice] = 0,
**kwargs,
) -> Union[Tuple, VibeVoiceCausalLMOutputWithPast]:
"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
speech_tensors (`torch.FloatTensor`, *optional*):
Input speech waveforms for voice cloning or speech understanding.
speech_masks (`torch.BoolTensor`, *optional*):
Masks indicating valid speech frames.
speech_input_mask (`torch.BoolTensor`, *optional*):
Positions in the input sequence where speech embeddings should be inserted.
Returns:
`VibeVoiceCausalLMOutputWithPast` or tuple
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Get embeddings
if inputs_embeds is None:
inputs_embeds = self.model.get_input_embeddings()(input_ids)
# Process speech inputs if provided
if speech_tensors is not None and speech_masks is not None:
acoustic_features, speech_embeds = self._process_speech_inputs(speech_tensors.to(self.dtype), speech_masks)
if speech_input_mask is not None:
inputs_embeds[speech_input_mask] = speech_embeds
outputs = self.model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs[0] if not return_dict else outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
if labels is not None:
raise NotImplementedError("Loss computation is not implemented in this version.")
return VibeVoiceCausalLMOutputWithPast(
logits=logits,
past_key_values=outputs.past_key_values,
last_hidden_state=hidden_states,
attentions=outputs.attentions,
)
def _build_generate_config_model_kwargs(self, generation_config, inputs, tokenizer, return_processors=False, **kwargs):
if generation_config is None:
generation_config = GenerationConfig(
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
pad_token_id = tokenizer.pad_token_id
)
else:
generation_config = GenerationConfig(
**generation_config,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
pad_token_id = tokenizer.pad_token_id
)
generation_config, model_kwargs = self._prepare_generation_config(
generation_config,
True,
speech_start_id=tokenizer.speech_start_id,
speech_end_id=tokenizer.speech_end_id,
speech_diffusion_id=tokenizer.speech_diffusion_id,
**kwargs
)
generation_config.speech_start_id = tokenizer.speech_start_id
generation_config.speech_end_id = tokenizer.speech_end_id
generation_config.speech_diffusion_id = tokenizer.speech_diffusion_id
inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(inputs, generation_config.bos_token_id, model_kwargs)
batch_size = inputs_tensor.shape[0]
device = self.device
self._prepare_special_tokens(generation_config, True, device=device)
generation_config.use_cache = True
model_kwargs["use_cache"] = generation_config.use_cache
input_ids = inputs_tensor.to(self.device)
input_ids_length = input_ids.shape[1]
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
has_default_min_length = kwargs.get("min_length") is None and generation_config.min_length is not None
generation_config = self._prepare_generated_length(
generation_config=generation_config,
has_default_max_length=has_default_max_length,
has_default_min_length=has_default_min_length,
model_input_name=model_input_name,
inputs_tensor=inputs_tensor,
input_ids_length=input_ids_length,
)
max_cache_length = generation_config.max_length - 1
self._prepare_cache_for_generation(generation_config, model_kwargs, None, batch_size, max_cache_length, device)
model_kwargs['cache_position'] = torch.arange(input_ids_length, device=device, dtype=torch.long)
for k, v in model_kwargs.items():
if isinstance(v, torch.Tensor):
model_kwargs[k] = v.to(device=device)
if return_processors:
logits_processor = self._get_logits_processor(
generation_config=generation_config,
input_ids_seq_length=input_ids_length,
encoder_input_ids=inputs_tensor,
prefix_allowed_tokens_fn=None,
logits_processor=LogitsProcessorList(),
device=inputs_tensor.device,
model_kwargs=model_kwargs,
)
stopping_criteria = self._get_stopping_criteria(generation_config=generation_config, stopping_criteria=StoppingCriteriaList())
return generation_config, model_kwargs, input_ids, logits_processor, stopping_criteria
else:
return generation_config, model_kwargs, input_ids
@torch.no_grad()
def generate(
self,
inputs: Optional[torch.Tensor] = None,
generation_config: Optional[GenerationConfig] = None,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
synced_gpus: Optional[bool] = None,
assistant_model: Optional["PreTrainedModel"] = None,
audio_streamer: Optional[Union[AudioStreamer, AsyncAudioStreamer]] = None,
negative_prompt_ids: Optional[torch.Tensor] = None,
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
speech_tensors: Optional[torch.FloatTensor] = None,
speech_masks: Optional[torch.BoolTensor] = None,
speech_input_mask: Optional[torch.BoolTensor] = None,
return_speech: bool = True,
cfg_scale: float = 1.0,
stop_check_fn: Optional[Callable[[], bool]] = None,
**kwargs,
) -> Union[torch.LongTensor, VibeVoiceGenerationOutput]:
"""
Generates sequences of token ids and optionally speech outputs.
Args:
All standard generation arguments from GenerationMixin
negative_prompt_ids: Negative prompt for CFG in speech generation
negative_prompt_attention_mask: Attention mask for negative prompt
speech_tensors: Input speech for voice cloning
speech_masks: Masks for speech tensors
speech_input_mask: Positions to insert speech embeddings
return_speech: Whether to decode and return speech outputs
cfg_scale: CFG scale for speech generation
stop_check_fn: Optional callable that returns True if generation should stop
Returns:
Generated token sequences and optionally speech outputs
"""
# 1. Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call
tokenizer = kwargs.pop("tokenizer", None) # Pull this out first, we only use it for stopping criteria
parsed_scripts = kwargs.pop("parsed_scripts", None)
all_speakers_list = kwargs.pop("all_speakers_list", None)
max_length_times = kwargs.pop("max_length_times", 2)
if kwargs.get('max_new_tokens', None) is None:
kwargs['max_new_tokens'] = self.config.decoder_config.max_position_embeddings - kwargs['input_ids'].shape[-1]
generation_config, model_kwargs, input_ids, logits_processor, stopping_criteria = self._build_generate_config_model_kwargs(
generation_config, inputs, tokenizer, return_processors=True, **kwargs
)
negative_kwargs = {
'input_ids': torch.full((kwargs['input_ids'].shape[0], 1), tokenizer.speech_start_id, dtype=torch.long, device=kwargs['input_ids'].device),
'attention_mask': torch.ones((kwargs['input_ids'].shape[0], 1), dtype=torch.long, device=kwargs['input_ids'].device),
'max_new_tokens': kwargs.get('max_new_tokens', 100)
}
negative_generation_config, negative_model_kwargs, negative_input_ids = self._build_generate_config_model_kwargs(
None, None, tokenizer, return_processors=False, **negative_kwargs
)
acoustic_cache = VibeVoiceTokenizerStreamingCache()
semantic_cache = VibeVoiceTokenizerStreamingCache()
batch_size = input_ids.shape[0]
device = input_ids.device
finished_tags = torch.zeros(batch_size, dtype=torch.bool, device=device)
correct_cnt = torch.zeros(batch_size, dtype=torch.long, device=device)
is_prefill = True
inputs_embeds = None
verbose = kwargs.get("verbose", False)
# Initialize audio chunks storage for each sample
audio_chunks = [[] for _ in range(batch_size)]
initial_length = input_ids.shape[-1]
initial_length_per_sample = model_kwargs['attention_mask'].sum(dim=-1)
# Define all valid tokens that can be generated
valid_tokens = [
generation_config.speech_start_id,
generation_config.speech_end_id,
generation_config.speech_diffusion_id,
generation_config.eos_token_id
]
# Add bos_token_id if it exists
if hasattr(generation_config, 'bos_token_id') and generation_config.bos_token_id is not None:
valid_tokens.append(generation_config.bos_token_id)
# Add custom processor to constrain token generation
token_constraint_processor = VibeVoiceTokenConstraintProcessor(valid_tokens, device=device)
if logits_processor is None:
logits_processor = LogitsProcessorList()
logits_processor.append(token_constraint_processor)
max_steps = min(generation_config.max_length - initial_length, int(max_length_times * initial_length))
max_step_per_sample = torch.min(generation_config.max_length - initial_length_per_sample, (max_length_times * initial_length_per_sample).long())
reach_max_step_sample = torch.zeros(batch_size, dtype=torch.bool, device=device)
# Create progress iterator if verbose
if kwargs.get("show_progress_bar", True):
progress_bar = tqdm(range(max_steps), desc="Generating", leave=False)
else:
progress_bar = range(max_steps)
for step in progress_bar:
# Check for external stop signal
if stop_check_fn is not None and stop_check_fn():
if verbose:
print(f"Generation stopped externally at step {step + 1}")
# End the audio streamer if it exists
if audio_streamer is not None:
audio_streamer.end()
break
# Check if audio_streamer has been ended (stopped externally)
if audio_streamer is not None and hasattr(audio_streamer, 'finished_flags'):
if any(audio_streamer.finished_flags):
if verbose:
print(f"Audio generation stopped externally at step {step + 1}")
break
if finished_tags.all():
if hasattr(progress_bar, 'set_description'):
progress_bar.set_description("Generation complete")
break
if input_ids.shape[-1] >= generation_config.max_length:
print(f"Reached maximum generation length {generation_config.max_length}, stopped it.")
reached_samples = torch.arange(batch_size, device=device)[~finished_tags]
if reached_samples.numel() > 0:
reach_max_step_sample[reached_samples] = True
break
# Update progress bar description with active samples
if hasattr(progress_bar, 'set_description'):
active_samples = (~finished_tags).sum().item()
progress_bar.set_description(f"Generating (active: {active_samples}/{batch_size})")
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
if is_prefill:
# we process the speech inputs only during the first generation step
prefill_inputs = {
"speech_tensors": speech_tensors.to(device=device),
"speech_masks": speech_masks.to(device),
"speech_input_mask": speech_input_mask.to(device),
}
is_prefill = False
else:
_ = model_inputs.pop('inputs_embeds', None)
prefill_inputs = {'inputs_embeds': inputs_embeds}
# Forward pass through the model
outputs = self(
**model_inputs, **prefill_inputs, logits_to_keep=1, return_dict=True, output_attentions=False, output_hidden_states=False,
)
model_kwargs = self._update_model_kwargs_for_generation(
outputs, model_kwargs, is_encoder_decoder=False,
)
# Get logits and apply logits processor
next_token_logits = outputs.logits[:, -1, :].to(copy=True, dtype=torch.float32, device=input_ids.device)
# next_token_logits = outputs.logits[:, -1, :].to(copy=True, device=input_ids.device)
next_token_scores = logits_processor(input_ids, next_token_logits)
# token selection
if generation_config.do_sample:
probs = nn.functional.softmax(next_token_scores, dim=-1)
# TODO (joao): this OP throws "skipping cudagraphs due to ['incompatible ops']", find solution
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
else:
next_tokens = torch.argmax(next_token_scores, dim=-1)
next_tokens[finished_tags] = generation_config.eos_token_id
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
if not kwargs.get('refresh_negative', True):
negative_model_inputs = self.prepare_inputs_for_generation(negative_input_ids, **negative_model_kwargs)
# Forward negative pass through the model
if negative_model_inputs['inputs_embeds'] is None and inputs_embeds is not None:
negative_model_inputs['inputs_embeds'] = inputs_embeds
negative_model_inputs['input_ids'] = None
negative_outputs = self(
**negative_model_inputs, logits_to_keep=0, return_dict=True, output_attentions=False, output_hidden_states=False,
)
negative_model_kwargs = self._update_model_kwargs_for_generation(
negative_outputs, negative_model_kwargs, is_encoder_decoder=False,
)
negative_input_ids = torch.cat([negative_input_ids, next_tokens[:, None]], dim=-1)
# reached end of generation
if (next_tokens == generation_config.eos_token_id).any():
eos_indices = (next_tokens == generation_config.eos_token_id).nonzero(as_tuple=False).squeeze(1)
# Only print for samples that are newly finished (not already marked as finished)
new_eos_indices = eos_indices[~finished_tags[eos_indices]]
if new_eos_indices.numel() > 0:
finished_tags[new_eos_indices] = True
if verbose:
print(f"Samples {new_eos_indices.tolist()} reached EOS token at step {step + 1}.", flush=True)
if audio_streamer is not None:
audio_streamer.end(new_eos_indices)
# Check if any sample reached its maximum generation length
max_length_reached = step >= max_step_per_sample
new_max_length_indices = torch.nonzero(max_length_reached & ~finished_tags, as_tuple=False).squeeze(1)
if new_max_length_indices.numel() > 0:
finished_tags[new_max_length_indices] = True
reach_max_step_sample[new_max_length_indices] = True
if verbose:
print(f"Samples {new_max_length_indices.tolist()} reached max generation length at step {step + 1}.", flush=True)
if audio_streamer is not None:
audio_streamer.end(new_max_length_indices)
# speech_end
diffusion_end_indices = (next_tokens == generation_config.speech_end_id).nonzero(as_tuple=False).squeeze(1)
if diffusion_end_indices.numel() > 0:
# Clear tokenizer caches for samples that reached speech end
acoustic_cache.set_to_zero(diffusion_end_indices)
semantic_cache.set_to_zero(diffusion_end_indices)
# speech_begin
diffusion_start_indices = torch.arange(batch_size, device=device)[~finished_tags & (next_tokens == generation_config.speech_start_id)]
if diffusion_start_indices.numel() > 0 and kwargs.get('refresh_negative', True):
# update attention mask
for i, sample_idx in enumerate(diffusion_start_indices.tolist()):
negative_model_kwargs['attention_mask'][sample_idx, :] = 0
negative_model_kwargs['attention_mask'][sample_idx, -1] = 1
# update past key values
for layer_idx, (k_cache, v_cache) in enumerate(zip(negative_model_kwargs['past_key_values'].key_cache,
negative_model_kwargs['past_key_values'].value_cache)):
# Process each non-diffusion sample
for sample_idx in diffusion_start_indices.tolist():
# Shift cache for this sample
k_cache[sample_idx, :, -1, :] = k_cache[sample_idx, :, 0, :].clone()
v_cache[sample_idx, :, -1, :] = v_cache[sample_idx, :, 0, :].clone()
# update negative_input_ids
for sample_idx in diffusion_start_indices.tolist():
negative_input_ids[sample_idx, -1] = generation_config.speech_start_id
# Prepare inputs_embeds for next iteration
# Initialize with default embeddings for all tokens
next_inputs_embeds = self.model.get_input_embeddings()(next_tokens).unsqueeze(1) # [batch_size, 1, hidden_size]
# forward diffusion
# Diffusion indices are those that are not finished and not special tokens
diffusion_indices = torch.arange(batch_size, device=device)[~finished_tags & (next_tokens == generation_config.speech_diffusion_id)]
if diffusion_indices.numel() > 0:
if kwargs.get('refresh_negative', True):
negative_model_inputs = self.prepare_inputs_for_generation(negative_input_ids, **negative_model_kwargs)
# Forward negative pass through the model
if negative_model_inputs['inputs_embeds'] is None and inputs_embeds is not None:
negative_model_inputs['inputs_embeds'] = inputs_embeds
negative_model_inputs['input_ids'] = None
negative_outputs = self(
**negative_model_inputs, logits_to_keep=0, return_dict=True, output_attentions=False, output_hidden_states=False,
)
negative_model_kwargs = self._update_model_kwargs_for_generation(
negative_outputs, negative_model_kwargs, is_encoder_decoder=False,
)
negative_input_ids = torch.cat([negative_input_ids, next_tokens[:, None]], dim=-1)
# correct the non-diffusion indices
# we forward all samples' negative outputs even if
# they are not in diffusion mode to keep the cache consistent
# So we need to correct the kv cache of non-diffusion samples
non_diffusion_mask = ~finished_tags & (next_tokens != generation_config.speech_diffusion_id)
if non_diffusion_mask.any():
non_diffusion_indices = torch.arange(batch_size, device=device)[non_diffusion_mask]
start_indices = correct_cnt[non_diffusion_indices]
# 1. Update attention_mask - need to handle each sample separately
seq_len = negative_model_kwargs['attention_mask'].shape[1]
for i, (sample_idx, start_idx) in enumerate(zip(non_diffusion_indices.tolist(), start_indices.tolist())):
# Shift the attention mask for this sample
if start_idx + 1 < seq_len - 1:
negative_model_kwargs['attention_mask'][sample_idx, start_idx+1:] = \
negative_model_kwargs['attention_mask'][sample_idx, start_idx:-1].clone()
negative_model_kwargs['attention_mask'][sample_idx, start_idx] = 0
# 2. Update past_key_values
for layer_idx, (k_cache, v_cache) in enumerate(zip(negative_model_kwargs['past_key_values'].key_cache,
negative_model_kwargs['past_key_values'].value_cache)):
# Process each non-diffusion sample
for sample_idx, start_idx in zip(non_diffusion_indices.tolist(), start_indices.tolist()):
if start_idx + 1 < k_cache.shape[2] - 1:
# Shift cache for this sample
k_cache[sample_idx, :, start_idx+1:, :] = k_cache[sample_idx, :, start_idx:-1, :].clone()
v_cache[sample_idx, :, start_idx+1:, :] = v_cache[sample_idx, :, start_idx:-1, :].clone()
# 3. Update negative_input_ids
for sample_idx, start_idx in zip(non_diffusion_indices.tolist(), start_indices.tolist()):
if start_idx + 1 < negative_input_ids.shape[1] - 1:
negative_input_ids[sample_idx, start_idx+1:] = \
negative_input_ids[sample_idx, start_idx:-1].clone()
correct_cnt[non_diffusion_indices] += 1
positive_condition = outputs.last_hidden_state[diffusion_indices, -1, :]
negative_condition = negative_outputs.last_hidden_state[diffusion_indices, -1, :]
speech_latent = self.sample_speech_tokens(
positive_condition,
negative_condition,
cfg_scale=cfg_scale,
).unsqueeze(1)
# Decode acoustic latent to audio using acoustic streaming cache
scaled_latent = speech_latent / self.model.speech_scaling_factor.to(speech_latent.device) - self.model.speech_bias_factor.to(speech_latent.device)
audio_chunk = self.model.acoustic_tokenizer.decode(
scaled_latent.to(self.model.acoustic_tokenizer.device),
cache=acoustic_cache, # Use acoustic-specific cache
sample_indices=diffusion_indices.to(self.model.acoustic_tokenizer.device),
use_cache=True,
debug=False
)
# Store audio chunks for each sample
for i, sample_idx in enumerate(diffusion_indices):
idx = sample_idx.item()
# Only append audio chunk if the sample is not finished
if not finished_tags[idx]:
audio_chunks[idx].append(audio_chunk[i])
# Add streaming support here
if audio_streamer is not None:
# Stream the audio chunks immediately
audio_streamer.put(audio_chunk, diffusion_indices)
# Encode audio to semantic features using semantic streaming cache
semantic_features = self.model.semantic_tokenizer.encode(
audio_chunk,
cache=semantic_cache, # Use semantic-specific cache
sample_indices=diffusion_indices,
use_cache=True,
debug=False
).mean # semantic tokenizer has no VAE.
# Combine acoustic and semantic features for next input
acoustic_embed = self.model.acoustic_connector(speech_latent)
semantic_embed = self.model.semantic_connector(semantic_features)
diffusion_embeds = acoustic_embed + semantic_embed
# Update embeddings for diffusion indices
next_inputs_embeds[diffusion_indices] = diffusion_embeds
# Set inputs_embeds for next iteration
inputs_embeds = next_inputs_embeds
if audio_streamer is not None:
audio_streamer.end()
# Concatenate audio chunks for each sample
final_audio_outputs = []
for sample_chunks in audio_chunks:
if sample_chunks:
# Concatenate all chunks along the time dimension (assumed to be the last dimension)
concatenated_audio = torch.cat(sample_chunks, dim=-1)
final_audio_outputs.append(concatenated_audio)
else:
# If no audio was generated for this sample, append None
final_audio_outputs.append(None)
return VibeVoiceGenerationOutput(
sequences=input_ids,
speech_outputs=final_audio_outputs if return_speech else None,
reach_max_step_sample=reach_max_step_sample,
)
@torch.no_grad()
def sample_speech_tokens(self, condition, neg_condition, cfg_scale=3.0):
self.model.noise_scheduler.set_timesteps(self.ddpm_inference_steps)
condition = torch.cat([condition, neg_condition], dim=0).to(self.model.prediction_head.device)
speech = torch.randn(condition.shape[0], self.config.acoustic_vae_dim).to(condition)
for t in self.model.noise_scheduler.timesteps:
half = speech[: len(speech) // 2]
combined = torch.cat([half, half], dim=0)
eps = self.model.prediction_head(combined, t.repeat(combined.shape[0]).to(combined), condition=condition)
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
eps = torch.cat([half_eps, half_eps], dim=0)
speech = self.model.noise_scheduler.step(eps, t, speech).prev_sample
return speech[: len(speech) // 2]
AutoModelForCausalLM.register(VibeVoiceConfig, VibeVoiceForConditionalGenerationInference)
__all__ = [
"VibeVoiceForConditionalGenerationInference",
]